• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Working Principle of a Capacitor

Electrical4u
Field: Basic Electrical
0
China

To demonstrate how does a capacitor work, let us consider a most basic structure of a capacitor. It is made of two parallel conducting plates separated by a dielectric that is parallel plate capacitor. When we connect a battery (DC Voltage Source) across the capacitor, one plate (plate-I) gets attached to the positive end, and another plate (plate-II) to the negative end of the battery. Now, the potential of that battery is applied across that capacitor. At that situation, plate-I is in positive potency with respect to the plate-II. At steady state condition, the current from the battery tries to flow through this capacitor from its positive plate (plate-I) to negative plate (plate-II) but cannot flow due to the separation of these plates with an insulating material.
charging capacitor
An electric field appears across the capacitor. As time goes on, positive plate (plate I) will accumulate positive charge from the battery, and negative plate (plate II) will accumulate negative charge from the battery. After a certain time, the capacitor holds maximum amount of charge as per its capacitance with respect to this voltage. This time span is called charging time of this capacitor.

After removing this battery from this capacitor, these two plates hold positive and negative charge for a certain time. Thus this capacitor acts as a source electrical energy.
capacitor


If two ends (plate I and plate II) are connected to a load, a current will flow through this load from plate-I to plate-II until all charges get vanished from both plates. This time span is known as discharging time of the capacitor.
discharging capacitor

Capacitor in a DC Circuit

Suppose a capacitor is connected across a battery through a switch.

When the switch is ON, i.e., at t = +0, a current will start flowing through this capacitor. After a certain time (i.e. charging time) capacitor never allow current to flow through it further. It is because of the maximum charges is accumulated on both plates and capacitor acts as a source which has a positive end connected to the positive end of the battery and has a negative end connected to the negative end of the battery with the same potency.

Due to zero potential difference between battery and capacitor, no current will flow through it. So, it can be said that initially a capacitor is short-circuited and finally open circuited when it gets connected across a battery or DC source.

Capacitor in an AC Circuit

Suppose a capacitor is connected across an AC source. Consider, at a certain moment of positive half of this alternating voltage, plate-I gets positive polarity and plate-II negative polarity. Just at that moment, plate-I accumulates positive charge and plate-II accumulates negative charge.

But at the negative half of this applied AC voltage, plate-I gets a negative charge and plate-II positive charge. There is no flow of electrons between these two plates due to dielectric placed between the plates but they change their polarity with the change of source polarity. The capacitor plates get charged and discharged alternatively by the AC.


Source: Electrical4u.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!

Recommended

Revolutionary 550 kV Capacitor-Free Arc-Quenching Circuit Breaker Debuts in China
Recently, a Chinese high-voltage circuit breaker manufacturer, in collaboration with numerous renowned enterprises, successfully developed a 550 kV capacitor-free arc-quenching chamber circuit breaker, which has passed the full suite of type tests on its first attempt. This achievement marks a revolutionary breakthrough in the interrupting performance of circuit breakers at the 550 kV voltage level, effectively resolving the long-standing “bottleneck” issue caused by reliance on imported capacit
11/17/2025
Why Capacitor Bank Isolators Overheat & How to Fix
Causes of High Temperature in Isolating Switches of Capacitor Banks and Corresponding SolutionsI. Causes: OverloadThe capacitor bank is operating beyond its designed rated capacity. Poor ContactOxidation, loosening, or wear at contact points increases contact resistance. High Ambient TemperatureElevated external environmental temperatures impair the switch’s ability to dissipate heat. Inadequate Heat DissipationPoor ventilation or dust accumulation on heat sinks hinders effective cooling. Harmon
11/08/2025
Voltage Imbalance: Ground Fault, Open Line, or Resonance?
Single-phase grounding, line break (open-phase), and resonance can all cause three-phase voltage unbalance. Correctly distinguishing among them is essential for rapid troubleshooting.Single-Phase GroundingAlthough single-phase grounding causes three-phase voltage unbalance, the line-to-line voltage magnitude remains unchanged. It can be classified into two types: metallic grounding and non-metallic grounding. Inmetallic grounding, the faulted phase voltage drops to zero, while the other two phas
11/08/2025
Vacuum Circuit Breakers for Capacitor Bank Switching
Reactive Power Compensation and Capacitor Switching in Power SystemsReactive power compensation is an effective means to increase system operating voltage, reduce network losses, and improve system stability.Conventional Loads in Power Systems (Impedance Types): Resistance Inductive reactance Capacitive reactanceInrush Current During Capacitor EnergizationIn power system operation, capacitors are switched in to improve power factor. At the moment of closing, a large inrush current is generated.
10/18/2025
Related Products
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.