Leakage Flux And Fringing

Edwiin
05/28/2025

Leakage Flux and Fringing Effect Analysis
Definition: Leakage flux refers to the magnetic flux that deviates from the intended path in a magnetic circuit. This can be illustrated using a solenoid to distinguish between leakage flux and fringing effect:
When current passes through a solenoid, most flux forms the main flux along the core axis, while a fraction leaks outside the coil without fully following the core path—this is leakage flux. In a long solenoid, leakage flux primarily occurs at both ends, where magnetic field lines diverge into the surrounding air instead of passing through the core's cross - section.
Simultaneously, at the solenoid's ends, magnetic field lines exhibit non - uniform distribution, creating a "fringing effect" that causes flux diffusion. Unlike leakage flux (which emphasizes path deviation), fringing describes the main flux's dispersion at boundaries. Both phenomena impact solenoid efficiency: leakage flux induces energy loss, while fringing distorts the magnetic field, requiring optimization through measures like increasing core cross - section or applying magnetic shielding in electromagnetic designs.
Flux Classification in Solenoid Magnetic Circuits
The majority of magnetic flux generated by a solenoid propagates through the core, traverses the air gap, and contributes to the magnetic circuit's intended function. This component is defined as the useful flux (φᵤ).
In practical scenarios, not all flux adheres strictly to the designed path within the magnetic core. A portion of the flux emanates around the coil or surrounds the core without contributing to the circuit's operational purpose. This non - functional flux is termed leakage flux (φₗ), which dissipates in the surrounding medium rather than participating in electromagnetic work.
Consequently, the total flux (Φ) produced by the solenoid is the algebraic sum of useful and leakage flux components, expressed by the equation:Φ= ϕu + ϕl
Leakage coefficient The ratio of the total flux produced to the useful flux set up in the air gap of the magnetic circuit is called a leakage coefficient or leakage factor. It is denoted by (λ).
 
Edwiin

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

Working Voltage in Power System
Working Voltage in Power System
Working VoltageThe term "working voltage" refers to the maximum voltage that a device can withstand without sustaining damage or burning out, while ensuring the reliability, safety, and proper operation of both the device and associated circuits.For long-distance power transmission, the use of high voltage is advantageous. In AC systems, maintaining a load power factor as close to unity as possible is also economically necessary. Practically, heavy currents are more challenging to handle than hi
Encyclopedia
07/26/2025
Frequency division method for measuring grid-to-ground insulation parameters
Frequency division method for measuring grid-to-ground insulation parameters
The frequency division method enables the measurement of grid-to-ground parameters by injecting a current signal of a different frequency into the open delta side of the potential transformer (PT).This method is applicable to ungrounded systems; however, when measuring the grid-to-ground parameters of a system where the neutral point is grounded via an arc suppression coil, the arc suppression coil must be disconnected from operation beforehand. Its measurement principle is shown in Figure 1.As
Leon
07/25/2025
The insulation parameters of the power grid to ground are measured by the tuning method
The insulation parameters of the power grid to ground are measured by the tuning method
The tuning method is suitable for measuring the ground parameters of systems where the neutral point is grounded via an arc suppression coil, but not applicable to ungrounded neutral point systems. Its measurement principle involves injecting a current signal with continuously varying frequency from the secondary side of the Potential Transformer (PT), measuring the returned voltage signal, and identifying the system's resonant frequency.During the frequency sweeping process, each injected heter
Leon
07/25/2025
Effect of Transition Resistance at the Grounding Point on the Rising Speed of Zero - sequence Voltage
Effect of Transition Resistance at the Grounding Point on the Rising Speed of Zero - sequence Voltage
In an arc - suppression coil grounding system, the rising speed of the zero - sequence voltage is greatly affected by the value of the transition resistance at the grounding point. The larger the transition resistance at the grounding point, the slower the rising speed of the zero - sequence voltage.In an ungrounded system, the transition resistance at the grounding point has basically no impact on the rising speed of the zero - sequence voltage.Simulation Analysis: Arc - suppression Coil Ground
Leon
07/24/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!