Electrical Transmission Tower Earthing

Encyclopedia
09/09/2024

Earthing Definition


Earthing of electrical transmission towers is defined as a safety measure where each tower is grounded to prevent electrical hazards.


Footing Resistance


Measuring the footing resistance ensures it is below 10 ohms, crucial for tower safety.


Pipe Earthing


In the pipe earthing system, we use a galvanized steel pipe that is 25 mm in diameter and 3 meters long. The pipe is buried vertically in the soil, with its top 1 meter below ground level. If the tower stands on rock, the earthing pipe must be buried in damp soil near the tower.

The tower leg is then connected to the pipe using galvanized steel tape of an appropriate cross-section. The steel tape must be buried in a groove cut into the rock and protected from damage.


In case of pipe earthing system we fill surroundings of the pipe with alternating layers of charcoal and salt, which maintain the surrounding soil of the pipe moist. A details pictorial representation of a pipe earthing is down here below.



4634f5154f05c0486cecb6cc86316e20.jpeg


Counterpoise Earthing


We use 10.97 mm dia galvanized wire for the purpose of counterpoise earthing of electrical transmission tower. Here we connect the galvanized wire with the leg of the tower with the help of galvanized lug and the galvanized lug is fitted with a tower leg with the help of 16 mm dia nut and bolts. The steel wire used for the purpose must be of minimum 25 meters in length. The wire is buried tangentially under the ground of minimum 1 meter depth from the ground level. Here four legs of a tower are connected together with counterpoise earth wire burried below the ground level of 1 meter depth as already been told.


Tower Earthing Lug


The earthing lug extends beyond the tower’s concrete base, ensuring a proper connection.

 

 


Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
What is Cathode Ray Oscilloscope (CRO)?
What is Cathode Ray Oscilloscope (CRO)?
What is Cathode Ray Oscilloscope (CRO)?DefinitionA cathode ray oscilloscope (CRO) is an electrical instrument for measuring, analyzing and visualizing waveforms and other electronic/electrical phenomena. As a high - speed X - Y plotter, it shows an input signal against another signal or time. Capable of analyzing waveforms, transient phenomena and time - varying quantities across a wide frequency range (from very low to radio frequencies), it mainly operates on voltage. Other physical quantities
Edwiin
07/25/2025
What is Automatic Voltage Regulator?
What is Automatic Voltage Regulator?
An automatic voltage regulator is employed to regulate voltage, converting fluctuating voltages into a constant one. Voltage fluctuations mainly stem from variations in the load on the supply system. Such voltage variations can damage the equipment within the power system. These fluctuations can be mitigated by installing voltage - control equipment at various locations, such as near transformers, generators, and feeders. Multiple voltage regulators are often placed throughout the power system t
Edwiin
05/22/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!