The difference between charging and discharging capacitors with alternating current

Encyclopedia
09/24/2024

Capacitors behave differently in AC circuits than they do in DC circuits. Capacitors in an AC circuit can be viewed as constantly charging and discharging because the voltage of an AC power supply changes periodically.


Behavior of capacitors in AC circuits


  • Equivalent to short circuit: In a high-frequency AC circuit, a capacitor behaves like a short circuit because its impedance (capacitive reactance) is very low.


  • Equivalent to open circuit: In low-frequency AC circuits, capacitors have a higher capacitive reactance and behave like open circuits.


Charging process


Current direction


When the capacitor is connected to the AC power supply to start charging, in the positive half of the AC power supply, the current flows from the positive terminal of the power supply to the positive plate of the capacitor, so that the positive plate of the capacitor is positively charged and the negative plate is negatively charged. In the negative half of the AC power supply, the current is in the opposite direction, flowing out of the positive plate of the capacitor and back to the negative electrode of the power supply, while the negative plate of the capacitor is positively charged and the positive plate is negatively charged.


Charging time


Since the voltage of the AC power supply is constantly changing, the charging time of the capacitor depends on the frequency of the AC power supply and the capacitance value of the capacitor. During a cycle of the AC power supply, the capacitor will be charged at different times. When the power supply voltage rises, the charging speed of the capacitor is faster. When the power supply voltage drops, the capacitor charge rate slows down and may even begin to discharge.


Charging energy


The energy stored by a capacitor during charging is proportional to the square of the supply voltage and the capacitance value of the capacitor. When the voltage of the AC power supply increases, the energy stored by the capacitor increases. When the voltage drops, less energy is stored.


Discharge process


Current direction


When the capacitor is fully charged, if disconnected from the AC power supply, the capacitor will discharge through the load. When discharging, the current flows out of the positive plate of the capacitor and returns to the negative plate through the load, in the opposite direction as when charging.


Discharge time


The discharge time of the capacitor depends on the capacitance value of the capacitor and the resistance value of the load. τ=RC According to the time constant (where R is the load resistance and C is the capacitance value), the discharge time is proportional to the time constant. The larger the capacitance value and the larger the load resistance, the longer the discharge time.


Discharge energy


The capacitor releases the stored energy during the discharge process, and as the discharge proceeds, the voltage at both ends of the capacitor gradually decreases, the discharge current also gradually decreases, and the energy released is less and less.


Overall distinction


Change of direction


When charging, the current direction changes periodically with the change of AC power supply, while when discharging, the current direction flows from the capacitor to the load, and the direction is relatively fixed.


Time characteristic


The charge time depends on the frequency of the AC power supply and the characteristics of the capacitor, while the discharge time depends on the parameters of the capacitor and the load.


Energy change


The capacitor stores energy when charging, and the energy changes with the power supply voltage; When discharging, the capacitor releases energy, which gradually decreases.


Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
What is Cathode Ray Oscilloscope (CRO)?
What is Cathode Ray Oscilloscope (CRO)?
What is Cathode Ray Oscilloscope (CRO)?DefinitionA cathode ray oscilloscope (CRO) is an electrical instrument for measuring, analyzing and visualizing waveforms and other electronic/electrical phenomena. As a high - speed X - Y plotter, it shows an input signal against another signal or time. Capable of analyzing waveforms, transient phenomena and time - varying quantities across a wide frequency range (from very low to radio frequencies), it mainly operates on voltage. Other physical quantities
Edwiin
07/25/2025
Calculation Method for Distribution Network Grounding Resistance Value (Part 1)
Calculation Method for Distribution Network Grounding Resistance Value (Part 1)
Summary of Issues Related to Distribution Network Grounding Resistance Threshold and CalculationIn the operation of the distribution network, the insufficient ability to identify the grounding resistance is a key issue affecting fault judgment. To reasonably set the threshold, multiple factors need to be comprehensively considered.I. Difficulties and Directions in Balancing ThresholdsThe operating conditions of the grounding resistance are extremely complex. The grounding media may include tree
Leon
07/22/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!