• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


On-Line Testing for Surge Arresters Below 110kV: Safe and Efficient

Oliver Watts
Field: Inspection and testing
China

An On-Line Testing Method for Surge Arresters at 110kV and Below

In power systems, surge arresters are critical components that protect equipment from lightning overvoltage. For installations at 110kV and below—such as 35kV or 10kV substations—an on-line testing method effectively avoids the economic losses associated with power outages. The core of this method lies in using online monitoring technology to evaluate arrester performance without interrupting system operation.

The test principle is based on leakage current measurement, analyzing the resistive current component to assess aging or defects within the arrester. International standard IEC 60099-4 specifies testing requirements for surge arresters, clearly stating that regular leakage current monitoring is essential for ensuring reliability. China’s national standard GB 11032 also emphasizes the feasibility of non-intrusive testing in systems rated at 110kV and below.

Test equipment includes high-precision current transformers (CTs), a data acquisition unit, and dedicated analysis software. The CT must have wideband frequency response, covering 50 Hz to 1 MHz, to accommodate various overvoltage scenarios. The data acquisition unit should feature isolation design to prevent interference from high-voltage circuits, ensuring signal accuracy. The software incorporates algorithm models—such as Fourier transform analysis—to calculate resistive current values in real time. Equipment calibration follows metrological standards, performed at least annually, with errors verified against a standard source to remain within ±1%. Operators must hold high-voltage electrical certification and be familiar with equipment manuals to avoid operational errors.

test.jpg

Implementation begins with site preparation. Select the arrester installation point, ensuring a dry environment free from strong electromagnetic interference. Before connecting equipment, verify grounding system integrity, with ground resistance below 4 ohms. Clamp the current transformer onto the arrester’s grounding lead, applying even pressure to prevent loosening. Connect the data acquisition unit to the CT output, launch the software, and set parameters such as a 1 kHz sampling rate and 5-minute measurement duration. Once recording starts, the system automatically captures the leakage current waveform. During the test, operators monitor real-time curves to identify abnormal fluctuations. After data collection, export raw files; the software automatically generates a report including peak resistive current, fundamental component, and harmonic analysis. Each step must be documented in the test log, including timestamp, ambient temperature, and humidity.

Safety measures are paramount. Conduct a risk assessment before work begins, identifying hazards such as electric shock and arc flash. Wear full protective gear, including insulating gloves, goggles, and flame-resistant clothing. Establish a safety perimeter with warning tape and “High Voltage Test” signs; unauthorized personnel must stay clear. Maintain safe distances during testing—minimum 1.5 meters for 110kV systems. Emergency preparedness includes fire extinguishers and first aid kits; if anomalies occur, immediately cut power and report. According to Article 40 of China’s Occupational Safety Law, enterprises must provide employees with no less than eight hours of annual safety training. Quality control requires test errors within ±2%, and repeated measurements must not deviate by more than 1%.

Results are analyzed using the software-generated report. A resistive current exceeding the baseline by 10% indicates aging and necessitates replacement; abnormal harmonic content suggests internal moisture or contamination. Report interpretation combines historical data to assess trends. For example, in a 35kV substation case, initial resistive current was 50μA, rising to 60μA after one year—prompt replacement prevented failure. Non-conforming results trigger maintenance workflows: complete a defect record form and notify operations teams for resolution within 48 hours. Data must be archived for at least five years for audit purposes.

This on-line method significantly improves efficiency, saving up to 90% time compared to traditional disassembly-based testing and reducing outage-related losses. Enterprises should establish annual plans, conducting tests quarterly to ensure system reliability. Continuous improvement includes adopting wireless transmission for remote monitoring. Successful implementation requires staff training to enhance technical proficiency. In summary, this method provides an efficient and safe solution for evaluating surge arresters in power systems at 110kV and below.

Give a tip and encourage the author!
Topics:

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
Why Must a Transformer Core Be Grounded at Only One Point? Isn't Multi-Point Grounding More Reliable?
Why Does the Transformer Core Need to Be Grounded?During operation, the transformer core, along with the metal structures, parts, and components that fix the core and windings, are all situated in a strong electric field. Under the influence of this electric field, they acquire a relatively high potential with respect to ground. If the core is not grounded, a potential difference will exist between the core and the grounded clamping structures and tank, which may lead to intermittent discharge.I
01/29/2026
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.