• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Varmeter | Single Phase and Polyphase Varmeter

Electrical4u
Field: Basic Electrical
0
China

What Is A Varmeter

The instruments which measure the reactive power of the circuit are called varmeter. What is reactive power? The reactive power in the circuit is given by VIsinA.
Here there is no need to give an explanation about the physical meaning of reactive power, as only a mathematical relation is sufficient. Measurement of reactive power is essential because if the reactive power is more in the circuit then the
electrical power factor will be poor hence losses will be more. On the basis of power supply, the varmeters can be classified as

  • Single phase varmeters

  • Polyphase varmeters.

We are going to discuss both types of varmeters one by one.

Single Phase Varmeter

In this type of varmeter the pressure is made highly inductive such that voltage across the pressure coil lead by the pressure coil current by angle of 90o. The coil current is the load current which has phase difference of angle of A with supply voltage. The reading of the varmeter is given by
which is mathematically equals to the reactive power of the circuit.
Given below is the circuit diagram of single phase varmeter.
vermeter

Let us make the phasor diagram for the above circuit by taking reference axis as voltage axis.
The pressure coil current lags voltage by an angle of 90o which is clearly shown in the phasor diagram.
phasor diagram of single phase varmeter

Now there are some demerits of using this varmeter as it do not measure reactive power correctly when harmonics are present.

Polyphase Varmeter

The two auto-transformers are used to create the phase shifting (which is necessary for the measurement of reactive power), when connected in open delta configuration. Current coils of both the wattmeter are connected in series with supply line 1 and 3.

While pressure coils are connected in parallel as shown in the diagram given below-
polyphase varmeterBoth the auto-transformers can produce maximum of 115.4% of the line voltage as marked in the diagram. Tapping on both the transformers are given at 57.7%, 100% and 115.4%. One of the end of the pressure coil of wattmeter (marked as one) is connected to 115.4 % of tapping of auto-transformer-2 while other end is connected to 57.7 % tapping of auto-transformer-1.

Due to this connection voltage produces across the pressure coil of wattmeter one is equal to line voltage but shifted by an angle of 90o. The power shown by wattmeter thus equal to reactive power. Similarly the pressure coil of wattmeter 2 is connected showing same voltage equal to line voltage but differ in phase and this difference in phase is equal to again 90o. Now the arithmetic sum of both readings of the wattmeters is equal to total reactive power of circuit.

Note that reactive power in three phase balanced circuit can be measured by single wattmeter method. This circuit diagram is shown below-
reactive power in three phase circuit measured by single wattmeterThe current coil is connected in series with line 2 as shown in the diagram. The pressure coil is connected between the line 1 and line 2. The reading of the wattmeter will measure the reactive power.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
HECI GCB for Generators – Fast SF6 Circuit Breaker
1.Definition and Function1.1 Role of the Generator Circuit BreakerThe Generator Circuit Breaker (GCB) is a controllable disconnect point located between the generator and the step-up transformer, serving as an interface between the generator and the power grid. Its primary functions include isolating generator-side faults and enabling operational control during generator synchronization and grid connection. The operating principle of a GCB is not significantly different from that of a standard c
01/06/2026
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.