Varmeter | Single Phase and Polyphase Varmeter

Electrical4u
03/27/2024

What Is A Varmeter

The instruments which measure the reactive power of the circuit are called varmeter. What is reactive power? The reactive power in the circuit is given by VIsinA.
Here there is no need to give an explanation about the physical meaning of reactive power, as only a mathematical relation is sufficient. Measurement of reactive power is essential because if the reactive power is more in the circuit then the
electrical power factor will be poor hence losses will be more. On the basis of power supply, the varmeters can be classified as

  1. Single phase varmeters

  2. Polyphase varmeters.

We are going to discuss both types of varmeters one by one.

Single Phase Varmeter

In this type of varmeter the pressure is made highly inductive such that voltage across the pressure coil lead by the pressure coil current by angle of 90o. The coil current is the load current which has phase difference of angle of A with supply voltage. The reading of the varmeter is given by

which is mathematically equals to the reactive power of the circuit.
Given below is the circuit diagram of single phase varmeter.
vermeter

Let us make the phasor diagram for the above circuit by taking reference axis as voltage axis.
The pressure coil current lags voltage by an angle of 90o which is clearly shown in the phasor diagram.
phasor diagram of single phase varmeter

Now there are some demerits of using this varmeter as it do not measure reactive power correctly when harmonics are present.

Polyphase Varmeter

The two auto-transformers are used to create the phase shifting (which is necessary for the measurement of reactive power), when connected in open delta configuration. Current coils of both the wattmeter are connected in series with supply line 1 and 3.

While pressure coils are connected in parallel as shown in the diagram given below-
polyphase varmeter
Both the auto-transformers can produce maximum of 115.4% of the line voltage as marked in the diagram. Tapping on both the transformers are given at 57.7%, 100% and 115.4%. One of the end of the pressure coil of wattmeter (marked as one) is connected to 115.4 % of tapping of auto-transformer-2 while other end is connected to 57.7 % tapping of auto-transformer-1. Due to this connection voltage produces across the pressure coil of wattmeter one is equal to line voltage but shifted by an angle of 90o. The power shown by wattmeter thus equal to reactive power. Similarly the pressure coil of wattmeter 2 is connected showing same voltage equal to line voltage but differ in phase and this difference in phase is equal to again 90o. Now the arithmetic sum of both readings of the wattmeters is equal to total reactive power of circuit.

Note that reactive power in three phase balanced circuit can be measured by single wattmeter method. This circuit diagram is shown below-
reactive power in three phase circuit measured by single wattmeter
The current coil is connected in series with line 2 as shown in the diagram. The pressure coil is connected between the line 1 and line 2. The reading of the wattmeter will measure the reactive power.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!