Lissajous Patterns of CRO or Cathode Ray Oscilloscope

Electrical4u
03/27/2024

What Are The Lissajous Patterns Of Cro

Cathode Ray Oscilloscope (CRO) is very important electronic device. CRO is very useful to analyze the voltage wave form of different signals. The main part of CRO is CRT (Cathode Ray Tube). A simple CRT is shown in figure below-
cathode ray oscilloscope

When both pairs of the deflection plates (horizontal deflection plates and vertical deflection plates) of CRO (Cathode Ray Oscilloscope) are connected to two sinusoidal voltages, the patterns appear at CRO screen are called the Lissajous pattern.
Shape of these Lissajous pattern changes with changes of phase difference between signal and ration of frequencies applied to the deflection plates (traces) of CRO. Which makes these Lissajous patterns very useful to analysis the signals applied to deflection plated of CRO. These lissajous patterns have two Applications to analysis the signals. To calculate the phase difference between two sinusoidal signals having same frequency. To determine the ratio frequencies of sinusoidal signals applied to the vertical and horizontal deflecting plates.

Calculation of the phase difference between two Sinusoidal Signals having same frequency

When two sinusoidal signals of same frequency and magnitude are applied two both pairs of deflecting plates of CRO, the Lissajous pattern changes with change of phase difference between signals applied to the CRO.
For different value of phase differences, the shape of Lissajous patterns is shown in figure below,

SL No. Phase angle difference ‘ø’ Lissajous Pattern appeared at CRO Screen
1 0o & 360o
2 30o or 330o
3 45o or 315o
4 60o or 300o
5 90o or 270o
6 120o or 240o
7 150o or 210o
8 180o

There are two cases to determine the phase difference ø between two signals applied to the horizontal and vertical plates,

Case – I: When, 0 < ø < 90o or 270o < ø < 360o : –
As we studied above it clear that when the angle is in the range of 0 < ø < 90o or 270o < ø < 360o, the Lissajous pattern is of the shape of Ellipse having major axis passing through origin from first quadrant to third quadrant:
Let’s consider an example for 0 < ø < 90o or 270o < ø < 360o, as shown in figure below,
Lissajous Patterns of CRO
In this condition the phase difference will be,

Another possibility of phase difference,

From Above given Lissajous pattern

Another Possibility of Phase Difference,

Case – II: When 90o < ø < 180o or 180o < ø < 270o
Lissajous Patterns of CRO
As we studied above it Clear that when the angle is in the range of 0o < ø < 90o or 270o < ø < 360o, the Lissajous Pattern is of the shape of Ellipse having major axis passing through origin from second quadrant to fourth quadrant:
Let’s consider an example for When, 90o < ø < 180o or 180o < ø < 270o, as shown in figure below,
In this condition the phase difference will be,

Another possibility of phase difference,
From Above given Lissajous pattern

Another Possibility of Phase Difference,
To determine the ratio of frequencies of signal applied to the vertical and horizontal deflecting plates:
To determine the ratio of frequencies of signal by using the Lissajous pattern, simply draw arbitrary horizontal and vertical line on lissajous pattern intersecting the Lissajous pattern. Now count the number of horizontal and vertical tangencies by Lissajous pattern with these horizontal and vertical line.
Then the ratio of frequencies of signals applied to deflection plates,

Or,

Let consider some example to clear the concept in details:

Examples Lissajous Pattern

Sl No. Lissajous Pattern Ratio of Frequencies fy/fx
1 fy/fx = 4/2 = 2
2 fy/fx = 3/1 = 3
3 fy/fx = 6/4 = 3/2
4 fy/fx = 6/8 = 3/4
5


fy/fx = 4/3
Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!