Owens Bridge Circuit and Advantages

Electrical4u
03/28/2024

What Is Owens Bridge Circuit

We have various bridges to measure inductor and thus quality factor, like Hay’s bridge is highly suitable for the measurement of a quality factor greater than 10, Maxwell’s bridge is highly suitable for measuring medium quality factor ranging from 1 to 10, and Anderson bridge can be successfully used to measure inductor ranging from few micro Henry to several Henry. So what is the need for Owen’s Bridge?.

The answer to this question is very easy. We need a bridge that can measure the inductor over a wide range. The bridge circuit which can do that is known as Owen’s bridge.

It is an AC bridge just like Hay’s bridge and Maxwell bridge which use a standard capacitor, inductors and variable resistors connected with AC sources for excitation. Let us study Owen’s bridge circuit in more detail.

Theory of Owen’s Bridge

An Owen’s bridge circuit is given below.
owens bridge

The AC supply is connected at a and c point. The arm ab is having inductor having some finite resistance let us mark them r1 and l1. The arm bc consists of pure electrical resistance marked by r3 as shown in the figure given below and carrying the current i1 at balance point which is same as the current carried by arm ab.
The arm cd consists of pure capacitor having no electrical resistance.The arm ad is having variable resistance as well as variable capacitor and the detector is connected between b and d. Now how this bridge works? this bridge measures the inductor in terms of capacitance. Let us derive an expression for inductor for this bridge.

Here l1 is unknown inductance and c2 is variable standard capacitor.
Now at balance point we have the relation from AC bridge theory that must hold good i.e.

Putting the value of z1, z2, z3 and in above equation we get,

Equating and then separating the real and the imaginary parts we get the expression for l1 and r1 as written below:

Now, there is a need to modify the circuit, in order to calculate the incremental value of inductance. Given below is the modified circuit of Owen’s bridge:
owens bridge
A valve voltmeter is placed across the resistor r3. The circuit is fed from both AC and DC source in parallel. The inductor is used to protect DC source from very high alternating current and the capacitor is used to block direct current from entering the AC source. The ammeter is connected in series with battery to measure the DC component of current while the AC component can be measured from the reading of the voltmeter (which is not sensitive to DC) connected across the resistance r3.
Now at the balance point we have, incremental inductor l1 = r2r3c4
also inductor

Therefore incremental permeability is

N is the number of turns, A is the area of flux path, l is the length of flux path, l1 is incremental inductance.
Let us mark drop across arm ab, bc, cd and ad as e1, e3, e4 and e2 respectively as shown in the above figure. This will help us to understand the phasor diagram well.
owens bridge
In general the most lagging current (i.e. i1) is chosen as reference in order to draw phasor diagram. Current i2 is perpendicular to current i1 as shown and drop across inductor l1 is perpendicular to i1 as it is an inductive drop while the drop across capacitor c2 is perpendicular to i2. At balance point e1 = e2 which is shown in the figure, now resultant of all these voltage drops e1, e2, e3, e4 will give e.

Advantages of Owen’s Bridge

  1. The for inductor l1 that we have derived above is quite simple and is independent of frequency component.

  2. This bridge is useful for the measurement of inductor over wide range.

Disadvantages of Owen’s Bridge

  1. In this bridge we have used variable standard capacitor which is quite expensive item and also the accuracy of this is about only one percent.

  2. As the measuring quality factor increases the value of standard capacitor required increases thus expenditure in making this bridge increases.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!