Bus-Bar Protection

Edwiin
04/26/2025

When a fault occurs on the bus bars, the entire power supply is interrupted, and all the non - faulty feeders are disconnected. The majority of bus bar faults are single - phase and often temporary in nature. Bus zone faults can occur due to various factors, such as the failure of support insulators, malfunctions in circuit breakers, or foreign objects accidentally falling across the bus bars. To clear a bus fault, all circuits connected to the faulty section must be opened.
The most commonly used bus zone protection schemes include:
  • Backup protection
  • Differential Overcurrent Protection
  • Circulating current protection
  • Voltage Overvoltage Protection
  • Frame leakage protection

Backup Protection for Bus - Bars

Backup protection represents a straightforward approach to safeguarding bus bars against faults. Faults on the bus bar often originate from the supplying system, making backup protection for the supply system essential. The diagram below illustrates a basic setup for bus - bar protection. Here, bus A is protected by the distance protection mechanism of bus B. In the event of a fault on bus A, the protective device on bus B will activate, with the relay operating within 0.4 seconds.
When a fault occurs on the bus bars, the entire power supply is interrupted, and all the non - faulty feeders are disconnected. The majority of bus bar faults are single - phase and often temporary in nature. Bus zone faults can occur due to various factors, such as the failure of support insulators, malfunctions in circuit breakers, or foreign objects accidentally falling across the bus bars. To clear a bus fault, all circuits connected to the faulty section must be opened.
The most commonly used bus zone protection schemes include:
  • Backup protection
  • Differential Overcurrent Protection
  • Circulating current protection
  • Voltage Overvoltage Protection
  • Frame leakage protection

Backup Protection for Bus - Bars

Backup protection represents a straightforward approach to safeguarding bus bars against faults. Faults on the bus bar often originate from the supplying system, making backup protection for the supply system essential. The diagram below illustrates a basic setup for bus - bar protection. Here, bus A is protected by the distance protection mechanism of bus B. In the event of a fault on bus A, the protective device on bus B will activate, with the relay operating within 0.4 seconds.

Circulating Current Protection and Voltage Differential Protection Relay

Circulating Current Protection

In the circulating current protection scheme, the summation current of the current transformers (CTs) flows through the operating coil of the relay. When current passes through the relay coils, it indicates the presence of short - circuit current in the CTs' secondaries. Consequently, the relay sends a signal to the circuit breakers, prompting them to open their contacts and isolate the faulty section of the electrical system.

However, a significant drawback of this protection scheme is that iron - cored current transformers can cause the relay to malfunction during external faults. The magnetic characteristics of iron - cored CTs may lead to unequal current transformation ratios under abnormal conditions, resulting in false tripping of the relay.

Voltage Differential Protection Relay

The voltage differential protection relay scheme employs coreless CTs, which offer improved linearity compared to their iron - cored counterparts. Linear couplers are utilized to increase the number of turns on the secondary sides of these CTs, enhancing the sensitivity and accuracy of the protection system.

In this setup, the secondary relays are connected in series via pilot wires. Additionally, the relay coil is also connected in series with the second terminal of the relevant circuit. This configuration allows for a more precise comparison of electrical quantities, enabling the protection system to accurately detect and respond to internal faults while remaining immune to the effects that cause false operations in traditional iron - cored CT - based schemes.
In a fault - free electrical system or when an external fault occurs, the algebraic sum of the secondary currents of the current transformers (CTs) equals zero. This balance is due to the normal flow of current through the system's healthy components, with the CTs accurately reflecting the current distribution. However, when an internal fault develops within the protected zone, the normal current flow is disrupted. Fault current then passes through the differential relay, disrupting the previously balanced current state.

Upon detecting this abnormal current flow, the differential relay activates. It promptly issues a command to the associated circuit breakers, instructing them to open their contacts. By quickly isolating the faulty section of the system, the differential protection mechanism effectively prevents further damage to equipment and ensures the stability of the overall electrical system. This rapid response helps minimize downtime and potential hazards, safeguarding the integrity of the power grid.
Edwiin

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!