Loss of Field or Excitation Protection of Alternator or Generator

Electrical4u
03/26/2024

What Is The Excitation Protection Of Alternator Or Generator

Loss of field or excitation can be caused in the generator due to excitation failure. In larger sized generator, energy for excitation is often taken from a separate auxiliary source or from a separately driven DC generator. The failure of auxiliary supply or failure of driving motor can also cause the loss of excitation in a generator. Failure of excitation that is failure of field system in the generator makes the generator run at a speed above the synchronous speed.
In that situation the generator or
alternator becomes an induction generator which draws magnetizing current from the system. Although this situation does not create any problem in the system immediately but over loading of the stator and overheating of the rotor due to continuous operation of the machine in this mode may create problems in the system in long-run. Therefore special care should be taken for rectifying the field or excitation system of the generator immediately after failure of that system. The generator should be isolated from rest of the system till the field system is properly restored.

There are mainly two schemes available for protection against loss of field or excitation of a generator. In 1st scheme, we use an undercurrent relay connected in shunt with main field winding circuit. This relay will operate if the excitation current comes below its predetermined value. If the relay is to operate for complete loss of field along, it must have a setting lies well below the minimum excitation current value which can be 8% of the rated full load current. Again when loss of field occurs due to failure of exciter but not due to problem in the field circuit (field circuit remains intact) there will be an induced current at slip frequency in the field circuit. This situation makes the relay to pick up and drop off as per slip frequency of the induced current in the field. This problem can be overcome in the following manner.

loss of field protection

In this case a setting of 5% of normal of full load current is recommended. There is a normally closed contact attached with the undercurrent relay. This normally closed contact remains open as the relay coil is energized by shunted excitation current during normal operation of the excitation system. As soon as there is any failure of excitation system, the relay coil becomes de-energized and the normally closed contact closes the supply across the coil of timing relay T1.

As the relay coil is energized, the normally open contact of this relay T1 is closed. This contact closes the supply across another timing relay T2 with an adjustable pickup time delay of 2 to 10 seconds. Relay T1 is time delayed on drop off to stabilize scheme again slip frequency effect. Relay T2 closes its contacts after the prescribed time delay to either shut down the set or initiate an alarm. It is time delayed on pickup to prevent spurious operation of the scheme during an external fault.
loss of excitation protection
loss of field protection of alternator
For larger generator or alternator, we use a more sophisticated scheme for that purpose. For larger machines, it is recommended to trip the machine after a certain prescribed delay in presence of swing condition resulting from loss of field. In addition to that there must be subsequent load shedding to maintain stability of the system. In this scheme of protection, an automatic imposition of load shedding to the system is also inherently required if the field is not restored within the described time delay. The scheme comprises an offset mho relay, and an instantaneous under voltage relay. As we have said earlier that it is not always required to isolate the generator immediately in the event of loss of field, unless there is a significant disturb in system stability.
We know that system voltage is the main indication of system stability. Therefore the offset mho relay is arranged to shut the machine down instantaneously when operation of generator is accompanied by a system voltage collapse. The drop in system voltage is detected by an under
voltage relay which is set to approximately 70 % of normal rated system voltage. The offset mho relay is arranged to initiate load shedding to the system up to a safe value and then to initiate a master tripping relay after a predetermined time.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!