Rotor Earth Fault Protection of Alternator or Generator

Electrical4u
03/26/2024

The rotor of an alternator is wound by field winding. Any single earth fault occurring on the field winding or in the exciter circuit is not a big problem for the machine. But if more than one earth fault occur, there may be a chance of short circuiting between the faulty points on the winding. This short circuited portion of the winding may cause unbalance magnetic field and subsequently mechanical damage may occur in the bearing of the machine due to unbalanced rotation.

Hence it is always essential to detect the earth fault occurred on the rotor field winding circuit and to rectify it for normal operation of the machine. There are various methods available for detecting rotor earth fault of alternator or generator. But basic principle of all the methods is same and that is closing a relay circuit through the earth fault path.

There are mainly three types of rotor earth fault protection scheme used for this purpose.

  1. Potentiometer method

  2. AC injection method

  3. DC injection method

Let us discuss the methods one by one.

Potentiometer Method of Rotor Earth Fault Protection in Alternator

The scheme is very simple. Here, one resistor of suitable value is connected across the field winding as well as across exciter. The resistor is centrally tapped and connected to the ground via a voltage sensitive relay.

As it is seen in the figure below, any earth fault in the field winding as well as exciter circuit closes the relay circuit through earthed path. At the same time the voltage appears across the relay due to potentiometer action of the resistor.
potentiometer method
This simple method of rotor earth fault protection of alternator has a big disadvantage. This arrangement can only sense the earth fault occurred in the any point except the center of the field winding.

From the circuit it is also clear that in the case of earth fault on the center of the field circuit will not cause any voltage to be appeared across the relay. That means simple potentiometer methods of rotor earth fault protection, is blind to the faults at the center of the field winding. This difficulty can be minimized by using another tap on the resistor somewhere else from the center of the resistor via a push button. If this push button is pressed, the center tap is shift and the voltage will appear across the relay even in the event of central arc fault occurs on the field winding.

AC Injection Method of Rotor Earth Fault Protection in Alternator

Here, one voltage sensitive relay is connected at any point of the field and exciter circuit. Other terminal of the voltage sensitive relay is connected to the ground by a capacitor and secondary of one auxiliary transformer as shown in the figure below.
ac injection method
Here, if any earth fault occurs in the field winding or in the exciter circuit, the relay circuit gets closed via earthed path and hence secondary voltage of the auxiliary transformer will appear across the voltage sensitive relay and the relay will be operated.

The main disadvantage of this system is, there would always be a chance of leakage current through the capacitors to the exciter and field circuit. This may cause unbalancing in magnetic field and hence mechanical stresses in the machine bearings.

Another disadvantage of this scheme is that as there is different source of voltage for operation of the relay, thus the protection of rotor is inactive when there is a failure of supply in the AC circuit of the scheme.
ac injection method

DC Injection Method of Rotor Earth Fault Protection in Alternator

The drawback of leakage current of AC injection method can be eliminated in DC Injection Method. Here, one terminal of DC voltage sensitive relay is connected with positive terminal of the exciter and another terminal of the relay is connected with the negative terminal of an external DC source. The external DC source is obtained by an auxiliary transformer with bridge rectifier. Here the positive terminal of bridge rectifier is grounded.
alternator rotor protection
It is also seen from the figure below that at the event of any field earth fault or exciter earth fault, the positive potential of the external DC source will appear to the terminal of the relay which was connected to the positive terminal of the exciter. In this way the rectifier output voltage appears across the voltage relay and hence it is operated.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!