Trip Circuit Supervision

Electrical4u
03/26/2024

What Is Trip Circuit Supervision

There are different contacts connected in series along a trip circuit of an electrical circuit breaker. There must be some situation when the circuit breaker should not trip even a faulty current passes through its power contacts. Such situations are low gas pressure in SF6 circuit breaker, low air pressure in pneumatic operated circuit breaker etc. In this situation the trip coil of the CB must not be energized to trip the CB. So there must be NO contacts associated with gas pressure and air pressure relays, connected in series with breaker trip coil. Another scheme of trip coil is that it should not be re energized once the circuit breaker is opened. That is done by providing one NO contact of breaker auxiliary switch in series with trip coil. In addition to that the trip circuit of a CB has to pass through considerable numbers of intermediate terminal contacts in relay, control panel and circuit breaker kiosk.

So if any of the intermediate contacts is detached, the circuit breaker fails to trip. Not only that, if DC supply to the trip circuit fails, the CB will not trip. To overcome this abnormal situation, trip circuit supervision becomes very necessary. The figure below shows the simplest form of trip circuit healthy scheme. Here a series combination of one lamp, one push bottom and one resistor is connected across the protective relay contact as shown. In healthy situation all the contacts except protective relay contact are in close position. Now if push bottom (PB) is pressed, the trip circuit supervision network is completed and lamp glows indicating that the breaker is ready for tripping.

trip circuit supervision
The above scheme is for supervision while circuit breaker is closed. This scheme is called post close supervision. There is another supervision scheme which is called pre and post close supervision.

This trip circuit supervision scheme is also quite simple. The only difference is that here in this scheme, one NC contact of same auxiliary switch is connected across the auxiliary NO contact of the trip circuit. The auxiliary NO contact is closed when CB is closed and auxiliary NC contact is closed when CB is open and vice versa. Hence, as shown in the figure below when the circuit breaker is closed the trip circuit supervision network is completed via auxiliary NO contact but when the circuit breaker is open the same supervision network is completed via NC contact. The resistor is used series with the lamp for preventing unwanted tripping of circuit breaker due to internal short circuit caused by failure of the lamp.
Trip Circuit Supervision
So far whatever we have discussed it is only for locally controlled installation but for a distance control installation, relay system is necessary. The figure below shows the trip circuit supervision scheme wherever a remote signal is required.
Trip Circuit Supervision
When trip circuit is healthy and circuit breaker is closed, relay A is energized which closes the NO contact A1 and hence relay C is energized. Energized relay C keeps NC contact in open position. Now if the circuit breaker is open, relay B is energized which closes No contact B1 hence relay C is energized. As C is energized, it keeps the NC contact C1 in open position. While CB is closed, if there is any discontinuity in the trip circuit relay A is de-energized which opens contact A1 and consequently relay C is de-energized and which make the NC contact C1 in close position and hence alarm circuit is actuated. Trip circuit supervision is experienced by relay B with the circuit breaker is open in a similar manner as relay A with the circuit breaker is closed. Relays A and C are time-delayed by copper slugs to prevent spurious alarms during tripping or closing operations. The resistors are mounted separately from the relays and their values are chosen such that if any one component is inadvertently short-circuited, a tripping operation will not take place.

The alarm circuit supply should be separated from main trip supply so that the alarm can be actuated even the trip supply failed.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!