Remote Control Circuit Breaker Using a Microcontroller

Electrical4u
03/25/2024

What Is A Microcontroller

We often come across a situation where we want to switch on the electrical load by pressing some buttons on a computer program. Consider an example, where you are sitting in a power plant and you want to switch on a circuit breaker remotely. Controlling circuit breakers from a remote location can be achieved by using Microcontroller. We’ll discuss how to make a Remote Control Circuit Breaker Using a Microcontroller.

For this remote-controlled circuit breaker we will need:

  1. Microcontroller (such as an Arduino)

  2. Transistor

  3. Diode

  4. Resistors

  5. Relay

  6. LED

  7. PC (Personal Computer)

Microcontroller

A microcontroller is an IC that has the intelligence to understand the commands received from PC by a communication protocol. A microcontroller has different communication protocols to communicate with PC like Serial, Ethernet and CAN (Controller Area Network) communication protocols.

A microcontroller has got many peripherals like GPIO (general purpose Input Output) pins, ADC (Analog to Digital Converter), timer, UART (Universal Asynchronous Receiver Transmitter) and Ethernet and many more peripherals to communicate to the external world.
Digital output from a microcontroller is a low amperage signal.

When you set a pin HIGH, the voltage coming on that pin is typically +3.3V or +5V and the ampere that it can source or sink is around 30mA. This is fine if you are controlling an LED whose requirement is tiny.

If we want to control circuit breaker by microcontroller pin then we require a driver that can source the required amount of current to the load to switch on. You need a component in between your microcontroller and the device that would be controlled with small voltage and current. Relays and transistors are most often used for this purpose.



microcontroller based circuit breaker control


Transistor

Transistor works as a driver in this application which gives the required current to the relay to get it turned on when it is in saturation Mode.

Resistor

Resistors are used to limit the current in LED, transistors.

LED

Light emitting diode is used to indicate whether the circuit breaker is on or off.

Relay

A relay is a switch that is used to control high power electrical load (like Circuit Breaker, Motor, and Solenoid). A normal switch cannot handle a high power load that is why relay is used to control high power electrical load.

Working Principle of Remote Controlling of Circuit Breaker by Microcontroller

When a command is giving to the microcontroller to turn on the load, the microcontroller pin is set to 3.3V (in the above circuit) which turns on the NPN transistor. When the transistor is ON current flows from collector to emitter of the transistor which actuates the relay and relay connects the AC voltage to the circuit breaker which turns on the circuit breaker.

An LED is used to indicate whether the circuit breaker is ON or OFF. When a microcontroller pin is high LED is on (Circuit Breaker ON) when microcontroller pin is low transistor is in OFF condition and no current flows to the coil of relay and circuit breaker is OFF, LED also OFF.

Protection Diode

When the relay is switch off a back e.m.f is generated which can damage the transistor if the magnitude of back e.m.f is more the VCEO voltage of the transistor. To protect the transistor as well as the digital output of microcontroller a diode is used which conducts when the relay is off. This is also known as the freewheeling diode.

Designing

The assumed microcontroller gives 3.3V when the pin is high and 0V when the pin is low. Choose a relay of 12 V and 360-ohm coil resistance then-current taken by the relay to get turn on




This is rated current of the relay.

LED (forward voltage = 1.2 V) takes around 20mA current then resistance RLED




RLED value can be chosen to 500 Ω.




RB can be chosen as 4K to give more base current to transistor GUI (Graphical User Interface): A GUI can be developed in high level language (like C#) which uses the UDP (User Datagram Protocol) to communicate with microcontroller over PC. Below is the GUI that controls the digital output of microcontroller over UDP protocol.


Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!