What is the reason for using delta-delta connections in power transmission lines instead of other combinations?

Encyclopedia
10/09/2024

Voltage Aspect


In a delta connection, the line voltage is equal to the phase voltage. This characteristic makes the delta connection widely used in high and medium voltage areas for power transmission in situations where higher voltages are required, as it can directly utilize the line voltage for power transmission without the need for additional voltage conversion operations, which helps reduce energy losses during the voltage conversion process.


For example, in a delta-connected three-phase load, each phase load is connected directly between two phase lines, and the load's phase voltage is the same as the line voltage of the power source (grid). This means that when a three-phase motor is connected in a delta configuration, each winding can withstand the line voltage (380V), whereas in a star connection, each winding of the motor bears the phase voltage (220V). For devices requiring high voltage, a delta connection is more advantageous.


Load Capacity Aspect


The increase in the number of nodes in a delta connection does not affect the power supply's load capacity, and in some cases, each winding in a delta connection has more power than the windings in a star connection, which allows the system to withstand greater loads and transmit more electrical energy in transmission lines.


The performance of triangle connection in stability compared to other connection methods


Voltage Stability


In a delta connection of three-phase power, even if one winding is short-circuited, the voltage of the other windings will not change significantly, and the voltage is relatively stable. In contrast, in a star connection, if one winding is short-circuited, the voltage of the other windings will quickly increase, which may affect the stable operation of the transmission line.


Electric Energy Balance Stability


The delta connection of a three-phase load can achieve rapid electrical energy balancing, making power transmission more stable and providing users with more efficient power supply, reducing issues such as fluctuations caused by energy imbalance.


Impact of Triangle Connection on Transmission Efficiency


Reduce line loss


Triangular connections can effectively reduce power outages, thereby indirectly improving transmission efficiency. The reduction in the number of power outages means better continuity of power supply, reducing energy losses caused by restarting equipment and readjusting power distribution due to power outages. Moreover, triangular connections can balance the load, thereby reducing losses during transmission and providing continuous and effective power services to users, improving the overall efficiency of the transmission line.


Characteristics of Triangle Connection in Fault Response


Fault Current Limiting Aspects


In a transformer delta connection, when one phase fails, the fault current will flow into the other two phases. Because this type of connection is not easy to generate residual current, in some cases, it can provide better fault current limitation compared to other connection methods. However, it should be noted that when a single-phase short circuit occurs in a delta connection, the short-circuit current can exceed many times the rated current of the capacitor, which can easily lead to the expansion of the accident.


Reliability Aspect


The delta connection of a three-phase load can prevent the system from overloading or short-circuiting, effectively improving the reliability of the power system. This is very important for transmission lines, as it can ensure the safety and stability of the transmission process, reducing issues such as transmission interruptions caused by faults.


Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
What is Cathode Ray Oscilloscope (CRO)?
What is Cathode Ray Oscilloscope (CRO)?
What is Cathode Ray Oscilloscope (CRO)?DefinitionA cathode ray oscilloscope (CRO) is an electrical instrument for measuring, analyzing and visualizing waveforms and other electronic/electrical phenomena. As a high - speed X - Y plotter, it shows an input signal against another signal or time. Capable of analyzing waveforms, transient phenomena and time - varying quantities across a wide frequency range (from very low to radio frequencies), it mainly operates on voltage. Other physical quantities
Edwiin
07/25/2025
Calculation Method for Distribution Network Grounding Resistance Value (Part 1)
Calculation Method for Distribution Network Grounding Resistance Value (Part 1)
Summary of Issues Related to Distribution Network Grounding Resistance Threshold and CalculationIn the operation of the distribution network, the insufficient ability to identify the grounding resistance is a key issue affecting fault judgment. To reasonably set the threshold, multiple factors need to be comprehensively considered.I. Difficulties and Directions in Balancing ThresholdsThe operating conditions of the grounding resistance are extremely complex. The grounding media may include tree
Leon
07/22/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!