• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Admittance: What is it? (Formula & Admittance vs Impedance)

Electrical4u
Field: Basic Electrical
0
China

What Is Admittance

What is Admittance?

Admittance is defined as a measure of how easily a circuit or device will allow current to flow through it. Admittance is the reciprocal (inverse) of impedance, akin to how conductance and resistance are related. The SI unit of admittance is the siemens (symbol S).

To reiterate the above definition: let us first go through some important terms which associated with the topic admittance. We all know that resistance (R) has only magnitude but no phase. We can say that it is the measure of opposition for the flow of current.

In an AC circuit; in addition to the resistance, two impeding mechanisms (inductance and capacitance) have to be considered. So the term impedance is introduced which have the same function of resistance but have both magnitude and phase. Its real part is resistance, and the imaginary part is reactance, which came from the impeding mechanism.

When looking at admittance vs impedance, admittance is the inverse (i.e. the reciprocal) of impedance. Therefore it has the opposite function of impedance. That is, we can say it is the measure of the flow of current which is allowed by a device or a circuit. Admittance also measures the dynamic effects of susceptance of a material to polarization and is measured in Siemens or Mho. Oliver Heaviside introduced this in December 1887.

Derivation of Admittance from Impedance

Impedance consists of real part (resistance) and imaginary part (reactance). The symbol for impedance is the Z symbol, and the symbol for admittance is the Y symbol.

Admittance is also a complex number as impedance which is having a real part, Conductance (G) and imaginary part, Susceptance (B).

(it is negative for capacitive susceptance and positive for inductive susceptance)

Admittance Triangle

It is formed by admittance (Y), susceptance (B) and conductance (G) as shown below.
admittance triangle

From admittance triangle,

Admittance of a Series Circuit

When a circuit consist of Resistance and Inductance reactance in series is considered as shown below.
admittance series circuit

When the circuit consist of Resistance and Capacitive reactance in series is considered as shown below.
admittance

Admittance of a Parallel Circuit

A circuit which consist of two branches say A and B are considered as shown in figure below. ‘A’ comprises of an inductive reactance, XL and a resistance, R1 and ‘B’ comprises of a capacitive reactance, XC and a resistance, R2. The voltage, V is applied to the circuit.
admittance parallel circuitFor Branch A
For Branch B


So, if the admittance of a circuit is known, then the total current and power factor can be obtained easily.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
HECI GCB for Generators – Fast SF6 Circuit Breaker
1.Definition and Function1.1 Role of the Generator Circuit BreakerThe Generator Circuit Breaker (GCB) is a controllable disconnect point located between the generator and the step-up transformer, serving as an interface between the generator and the power grid. Its primary functions include isolating generator-side faults and enabling operational control during generator synchronization and grid connection. The operating principle of a GCB is not significantly different from that of a standard c
01/06/2026
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.