• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Basic Concept of Transmission Tower Foundation

Electrical4u
Field: Basic Electrical
0
China

What Is Transmission Tower Foundation

Foundation of any structure plays an important role in safety and satisfactory performance of the structure as it transmits mechanical loads of the electrical transmission system to earth. A transmission structure Without having a sound and safe foundation, it cannot perform the functions for which it has been designed. The foundations in various types of soils have to be designed to suit the soil conditions of particular type.
In addition to foundations of normal towers, there are situations where considering techno-economical aspect for special towers required or river crossing which may be located either on the bank of the river or in the mind stream or both, pile foundation may be provided.

Type of Loads on Foundation

The foundation of towers are normally subjected to three types of forces. These are:

  • The compression or downward thrust.

  • The tension or uplift.

  • The lateral forces of side thrusts in both transverse and longitudinal directions.

The magnitude or limit loads for foundations should be taken 10% higher than these for the corresponding towers.
The base slab of the foundation shall be designed for additional moments developing due to eccentricity of the loads.
transmission tower foundation
The additional weight of concrete in the footing below ground level over the earth weight and the full weight of concrete above ground level in the footing and embedded steel parts also be taken into account; adding to the down-thrust.

Soil parameters For designing the foundations, following parameters are required.

  • Limit bearing capacity of soil.

  • Density of soil.

  • Angle of earth frustum.

The above values are available from soil test report.

Stability Analysis of Transmission Tower Foundation

In addition to the strength design, stability analysis of the foundation shall be done to check the possibility of failure by over turning, uprooting of stubs, sliding and tilting of foundation etc. The following primary type of soil resistance shall be assumed to act in resisting the loads imposed on the footing in earth.

Resistance Against Uplift of Transmission Tower Foundation

The uplift loads shall be assumed to be resisted by the weight of earth in an inverted frustum of a pyramid of earth whose sides make an angle equal to the angle of report of the earth with the vertical in average soil. The volume of earth computation shall be as per enclosed drawing (Fig.3) The weight of concrete embedded in earth and that above the ground level shall also be considered for resisting the uplift. In case where the frustum of earth pyramid of two adjoining legs overlaps each other, the earth frustum shall be assumed truncated by a vertical plane passing through the center line of the tower base. Over load factor (OLF) of 10% (Ten percent) shall be considered over the design load i.e. OLF = 1.10 for suspension tower and 1.15 for angle including dead end and anchor tower. However, for special tower OLF shall be 1.20.

Resistance Against Down Thrust of Transmission Tower Foundation

The following load combinations shall be resisted by the bearing strength of the soil:

  • The down thrust loads combined with an additional weight of concrete above earth are assumed to be acting on the total area of the bottom of the footing.

  • The moment due to side thrust forces at the bottom of the footing.

The structural design of the base slab shall be developed for the above load combination. In case of toe (τ) pressure calculation due to above load combination allowable bearing pressure to be increased by 25%.

Resistance Against Side Thrust of Transmission Tower Foundation

The chimney shall be designed as per limit state method for the combined action of axial forces, tension and compression and the associated maximum bending moment. In these calculations, the tensile strength of concrete shall be ignored.

Resistance Against Uprooting of Stub of Transmission Tower Foundation

OLF of 10% (Ten percent) shall be considered i.e. OLF = 1.10 for normal suspension towers and 1.15 for angle tower including Dead end/anchor tower. For special towers OLF shall be 1.20.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
HECI GCB for Generators – Fast SF6 Circuit Breaker
1.Definition and Function1.1 Role of the Generator Circuit BreakerThe Generator Circuit Breaker (GCB) is a controllable disconnect point located between the generator and the step-up transformer, serving as an interface between the generator and the power grid. Its primary functions include isolating generator-side faults and enabling operational control during generator synchronization and grid connection. The operating principle of a GCB is not significantly different from that of a standard c
01/06/2026
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.