• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What are high-voltage power cables and the key features of high voltage power cables?

Encyclopedia
Field: Encyclopedia
0
China

A high-voltage power cable is a type of cable used for transmitting and distributing high-voltage electrical energy, typically in power transmission and distribution networks. The design and manufacturing of high-voltage power cables must meet strict standards to ensure safe and reliable operation under high voltage and high current conditions. Here are the main features of high-voltage power cables:

1. Complex Structure

  • Conductor: Usually composed of multiple strands of copper or aluminum wire to enhance mechanical strength and conductivity.

  • Insulation Layer: Uses high-performance insulating materials such as cross-linked polyethylene (XLPE) or ethylene propylene rubber (EPR) to withstand high voltages and prevent corona discharge.

  • Shielding Layers: Inner and outer shielding layers are used to ensure uniform electric field distribution, reduce partial discharges, and minimize corona phenomena.

  • Metal Sheath: Typically made of lead or aluminum, providing mechanical protection and a grounding path.

  • Outer Sheath: Made of wear-resistant and corrosion-resistant materials such as polyvinyl chloride (PVC) or polyethylene (PE) to protect the cable from external environmental factors.

2. High Voltage Withstanding Capability

  • Insulating Materials: High-voltage resistant and low dielectric constant insulating materials are selected to ensure the cable can operate stably at high voltages over long periods.

  • Electric Field Design: The cable structure and materials are optimized to ensure uniform electric field distribution, reducing local electric field intensity and preventing corona discharge and partial discharges.

3. Good Mechanical Properties

  • Mechanical Strength: The cable must have sufficient mechanical strength to withstand tensile, bending, and other mechanical stresses during installation.

  • Flexibility: While maintaining mechanical strength, the cable should also have sufficient flexibility for easy installation and deployment.

4. Environmental Resistance

  • Weather Resistance: The outer sheath material must have good weather resistance to withstand UV radiation, temperature changes, humidity, and other natural environmental factors.

  • Chemical Corrosion Resistance: The cable materials must resist chemical substances, acids, and alkalis in the soil.

5. High Reliability

  • Long-Term Stability: High-voltage power cables need to maintain stable electrical and mechanical properties over long periods.

  • Fault Detection: Cable designs often include fault detection and localization features to enable quick repairs in case of faults.

6. Economic Efficiency

  • Cost-Effectiveness: Although the initial investment for high-voltage power cables is high, their high reliability and long lifespan make them cost-effective in the long run.

  • Maintenance Costs: Good design and material selection can reduce maintenance frequency and costs.

7. Environmental Friendliness

  • Recyclability: Some high-voltage power cables use recyclable materials to reduce environmental pollution.

  • Low Emissions: The production process minimizes the emission of harmful substances, meeting environmental requirements.

Application Scenarios

  • Transmission Lines: Used for long-distance high-voltage transmission, such as inter-regional transmission lines.

  • Substations: Connecting high-voltage equipment within substations.

  • Industrial Facilities: Used in high-voltage power supply systems of large industrial facilities.

  • Urban Grids: Used in urban high-voltage distribution networks to ensure reliable power supply.

Summary

High-voltage power cables play a crucial role in power systems due to their complex structure, high voltage withstanding capability, good mechanical properties, environmental resistance, high reliability, economic efficiency, and environmental friendliness. By selecting appropriate materials and designs, high-voltage power cables can ensure efficient and safe transmission and distribution of electrical power.

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Classification of Equipment Defects for Relay Protection and Safety Automatic Devices in Substations
In daily operations, various equipment defects are inevitably encountered. Whether maintenance personnel, operation and maintenance staff, or specialized management personnel, all must understand the defect classification system and adopt appropriate measures according to different situations.According to Q/GDW 11024-2013 "Operation and Management Guide for Relay Protection and Safety Automatic Devices in Smart Substations," equipment defects are classified into three levels based on severity an
12/15/2025
Under What Conditions Will the Line Circuit Breaker Auto-Reclosing Signal Be Locked Out?
The line circuit breaker auto-reclosing signal will be locked out if any of the following conditions occur:(1) Low SF6 gas pressure in circuit breaker chamber at 0.5MPa(2) Insufficient energy storage in circuit breaker operating mechanism or low oil pressure at 30MPa(3) Busbar protection operation(4) Circuit breaker failure protection operation(5) Line distance protection zone II or zone III operation(6) Short lead protection operation of circuit breaker(7) Presence of remote tripping signal(8)
12/15/2025
Application of Auto-Reclosing Residual Current Protective Devices in Lightning Protection for Communication Power Supplies
1. Power Interruption Problems Caused by RCD False Tripping During Lightning StrikesA typical communication power supply circuit is shown in Figure 1. A residual current device (RCD) is installed at the power supply input terminal. The RCD primarily provides protection against electrical equipment leakage currents to ensure personal safety, while surge protective devices (SPDs) are installed on power supply branches to protect against lightning intrusions. When lightning strikes occur, the senso
12/15/2025
Related Products
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.