• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What are the key features of a paper insulated copper cable?

Encyclopedia
Field: Encyclopedia
0
China

Main Features of Paper-Insulated Copper Cable (PCC)

1. Excellent Electrical Performance

  • High Insulation Strength: The paper insulation, when impregnated with insulating oil, provides excellent insulation strength, making it suitable for high-voltage and ultra-high-voltage transmission systems.

  • Low Dielectric Loss: The dielectric loss tangent of the paper insulation is low, reducing energy losses and improving transmission efficiency.

  • Good Heat Resistance: The paper insulation maintains stable electrical properties at higher temperatures, ensuring reliable operation over long periods.

2. Superior Mechanical Properties

  • Good Flexibility: Paper-insulated copper cables are flexible, making them easy to install in complex environments and allowing for bending without damage.

  • High Tensile Strength: Copper conductors have high tensile strength, enabling the cable to withstand significant mechanical stress, suitable for long-distance overhead or underground installations.

  • Strong Corrosion Resistance: Copper conductors exhibit excellent corrosion resistance, especially in humid or corrosive environments, extending the cable's service life.

3. Excellent Thermal Stability

  • Heat Resistance: The paper insulation, after special treatment, can operate stably at high temperatures, typically up to 90°C or higher.

  • Good Heat Dissipation: The high thermal conductivity of copper allows heat to be efficiently dissipated from the cable's interior to the exterior, preventing overheating and ensuring safe operation.

4. Long Service Life

  • Extended Lifespan: Paper-insulated copper cables can last several decades or longer, particularly with proper maintenance. Their durability and reliability make them a preferred choice for many power systems.

  • Slow Aging: The paper insulation, when impregnated with oil, ages slowly, maintaining good insulation properties over time.

5. Cost-Effective

  • High Cost-Benefit Ratio: Although the initial investment for paper-insulated copper cables may be higher, their long lifespan and low maintenance costs result in lower overall ownership costs, offering good economic value.

  • Recyclable Materials: Both the copper conductor and paper insulation are recyclable, aligning with environmental sustainability goals and reducing resource waste.

6. Wide Range of Applications

  • High-Voltage and Ultra-High-Voltage Transmission: Paper-insulated copper cables are widely used in high-voltage (e.g., 110kV, 220kV) and ultra-high-voltage (e.g., 500kV and above) transmission systems, especially for long-distance power transmission.

  • Underground and Overhead Installations: These cables are suitable for both underground and overhead applications, adapting to various installation environments and requirements.

7. High Safety

  • Good Fire Resistance: The impregnated paper insulation has certain fire-resistant properties, maintaining cable integrity in case of fire and reducing safety hazards.

  • Low Leakage Risk: With its high insulation strength and low dielectric loss, paper-insulated copper cables have a very low risk of leakage, ensuring safe power transmission.

8. Easy Maintenance

  • Simple Inspection and Repair: The relatively simple structure of paper-insulated copper cables allows for easy inspection using conventional electrical testing methods. Potential issues can be detected and repaired promptly.

  • Accurate Fault Localization: In the event of a fault, partial discharge detection and other methods can accurately locate the fault point, facilitating quick repairs and minimizing downtime.

Summary

Paper-Insulated Copper Cables (PCC) are characterized by their excellent electrical performance, superior mechanical properties, thermal stability, long service life, cost-effectiveness, wide range of applications, high safety, and ease of maintenance. Despite advancements in modern cable technology, PCC remains widely used due to its reliability and durability, particularly in high-voltage and ultra-high-voltage transmission systems where long-term reliability is crucial.

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Classification of Equipment Defects for Relay Protection and Safety Automatic Devices in Substations
In daily operations, various equipment defects are inevitably encountered. Whether maintenance personnel, operation and maintenance staff, or specialized management personnel, all must understand the defect classification system and adopt appropriate measures according to different situations.According to Q/GDW 11024-2013 "Operation and Management Guide for Relay Protection and Safety Automatic Devices in Smart Substations," equipment defects are classified into three levels based on severity an
12/15/2025
Under What Conditions Will the Line Circuit Breaker Auto-Reclosing Signal Be Locked Out?
The line circuit breaker auto-reclosing signal will be locked out if any of the following conditions occur:(1) Low SF6 gas pressure in circuit breaker chamber at 0.5MPa(2) Insufficient energy storage in circuit breaker operating mechanism or low oil pressure at 30MPa(3) Busbar protection operation(4) Circuit breaker failure protection operation(5) Line distance protection zone II or zone III operation(6) Short lead protection operation of circuit breaker(7) Presence of remote tripping signal(8)
12/15/2025
Application of Auto-Reclosing Residual Current Protective Devices in Lightning Protection for Communication Power Supplies
1. Power Interruption Problems Caused by RCD False Tripping During Lightning StrikesA typical communication power supply circuit is shown in Figure 1. A residual current device (RCD) is installed at the power supply input terminal. The RCD primarily provides protection against electrical equipment leakage currents to ensure personal safety, while surge protective devices (SPDs) are installed on power supply branches to protect against lightning intrusions. When lightning strikes occur, the senso
12/15/2025
Related Products
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.