• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


10kV Static Var Generator(SVG) for Power Quality

  • 10kV Static Var Generator(SVG) for Power Quality
  • 10kV Static Var Generator(SVG) for Power Quality

Key attributes

Brand RW Energy
Model NO. 10kV Static Var Generator(SVG) for Power Quality
Rated voltage 10kV
Cooling mode Liquid cooling
Range of rated capacity 16~25 Mvar
Series RSVG

Product descriptions from the supplier

Description

Product overview

The 10kV direct-mounted high-voltage SVG (Static Var Generator) is an advanced reactive power compensation device for medium and high-voltage distribution networks. Its "direct-mounted" design means the equipment is connected directly to the 10kV grid through cascaded power units, eliminating the need for a step-up transformer. It serves as a key device for improving power quality and enhancing grid stability. The SVG boasts a response time of milliseconds, enabling instantaneous compensation. As a current-source type, its output is less affected by voltage, allowing it to provide robust reactive power support even under low-voltage conditions. The SVG generates almost no low-order harmonics, and the direct-mounted design eliminates transformers, resulting in a compact structure.

System Structure and Working Principles

  1. Core structure: Power Unit Cabinet: Composed of dozens of 1700V-rated H-bridge IGBT modules connected in series, collectively withstanding 10kV high voltage. It integrates high-speed control (DSP+FPGA) and communicates with all power units via RS-485/CAN bus for state monitoring and command issuance.  Grid-side Coupling Transformer: Functions to filter, limit current, and suppress current rate of change.

  2. Working Principle:The controller continuously monitors the grid load current, instantaneously calculates the required reactive current compensation, and controls the switching of IGBTs via PWM technology. This generates a current synchronized with the grid voltage and phase-shifted by 90 degrees, precisely offsetting the load's reactive power. As a result, the grid side supplies only active power, achieving high power factor and voltage stability.

Heat dissipation mode

00.04.png

 

Mian feature

  • High Efficiency and Cost-Effectiveness: No transformer losses, system efficiency exceeds 98.5%, while saving on transformer costs and space.

  • Dynamic Precision: Millisecond-level response, stepless smooth compensation, effectively eliminating voltage flicker caused by impact loads (e.g., arc furnaces, rolling mills).

  • Stable and reliable: It can still provide robust reactive power support even when grid voltage fluctuates.

  • Environmentally friendly: It has extremely low harmonic output, causing minimal pollution to the power grid.

Technical Parameters

Name

Specification

Rated voltage

6kV±10%~35kV±10%

Assessment point voltage

6kV±10%~35kV±10%

Input voltage

0.9~ 1.1pu; LVRT 0pu(150ms), 0.2pu(625ms)

Frequency

50/60Hz; Allow short-term fluctuations

Output capacity

±0.1Mvar~±200 Mvar

Starting power

±0.005Mvar

Compensation current resolution

0.5A

Response time

<5ms

Overload capacity

>120% 1min

Power loss

<0.8%

THDi

<3%

Power supply

Dual power supply

Control power

380VAC, 220VAC/220VDC

Reactive power regulation mode

Capacitive and inductive automatic continuous smooth adjustment

Communication interface

Ethernet, RS485, CAN, Optical fiber

Communication protocol

Modbus-RTU, Profibus, CDT91, IEC61850- 103/104

Running mode

Constant device reactive power mode, constant assessment point reactive power mode, constant assessment point power factor mode, constant assessment point voltage mode and load compensation mode

Parallel mode

Multi machine parallel networking operation, multi bus comprehensive compensation and multi group FC comprehensive compensation control

Protection

Cell DC overvoltage, Cell DC undervoltage, SVG overcurrent, drive fault, power unit overvoltage, overcurrent, overtemperature and communication fault; Protection input interface, protection output interface, abnormal system power supply and other protection functions.

Fault handling

Adopt redundant design to meet N-2 operation

Cooling mode

Water cooling/Air cooling

IP degree

IP30(indoor); IP44(outdoor)

Storage temperature

-40℃~+70℃

Running temperature

-35℃~ +40℃

Humidity

<90% (25℃), no condensation

Altitude

<=2000m (above 2000m customized)

Earthquake intensity

Ⅷ degree

Pollution level

Grade IV

Specifications and dimensions of 10kV outdoor products

Air cooling type

Voltage class(kV) Rated capacity(Mvar) Dimension
W*D*H(mm)
Weight(kg) Reactor type
10 0.5~0.9 3200*2350*2591 3000 Iron core reactor
1.0~4.0 5500*2350*2800 6500~6950 Iron core reactor
5.0~6.0 5500*2350*2800 6700~6950 Iron core reactor
7.0~12.0 6700*2438*2560 6700~6950 Air core reactor
13.0~21.0 9700*2438*2560 9000~9700 Air core reactor

Water cooling type

Voltage class(kV) Rated capacity(Mvar) Dimension
W*D*H(mm)
Weight(kg) Reactor type
10 1.0~15.0 5800*2438*2591 8200~9200 Air core reactor
16.0~25.0 9300*2438*2591 13000~15000 Air core reactor

Note:
1. Capacity (Mvar) refers to the rated regulation capacity within the dynamic regulation range from inductive reactive power to capacitive reactive power.
2. The air core reactor is used for the equipment, and there is no cabinet, so the placement space needs to be planned separately.
3. The above dimensions are for reference only. The company reserves the right to upgrade and improve the products. The product dimensions are subject to change without notice.


Application Scenarios

  • New Energy Power Stations (Wind/Solar): Mitigate power fluctuations and ensure grid-connected voltage stability meets standards.

  • Heavy Industry (Steel/Mining/Port): Compensate for impact loads such as electric arc furnaces, large rolling mills, and hoists.

  • Electrified railways: Addressing negative sequence and reactive power issues in the traction power supply system.

Documentation Resource Library
Restricted
Power compensation equipment SVG/FC/APF Catalog
Catalogue
English
Consulting
Consulting
FAQ
Q: How to choose the appropriate capacity for SVG?
A:

SVG capacity selection core: steady-state calculation & dynamic correction. Basic formula: Q ₙ=P × [√ (1/cos ² π₁ -1) - √ (1/cos ² π₂ -1)] (P is active power, power factor before compensation, target value of π₂, often requires ≥ 0.95). Load correction: impact/new energy load x 1.2-1.5, steady-state load x 1.0-1.1; High altitude/high temperature environment x 1.1-1.2. New energy projects must comply with standards such as IEC 61921 and ANSI 1547, with an additional 20% low-voltage ride through capacity reserved. It is recommended to leave 10% -20% expansion space for modular models to avoid compensation failure or compliance risks caused by insufficient capacity.

Q: What are the differences between SVG, SVC, and capacitor cabinets?
A:

What are the differences between SVG, SVC, and capacitor cabinets?

The three are the mainstream solutions for reactive power compensation, with significant differences in technology and applicable scenarios:

Capacitor cabinet (passive): The lowest cost, graded switching (response 200-500ms), suitable for steady-state loads, requires additional filtering to prevent harmonics, suitable for budget limited small and medium-sized customers and entry-level scenarios in emerging markets, in compliance with IEC 60871.

SVC (Semi Controlled Hybrid): Medium cost, continuous regulation (response 20-40ms), suitable for moderate fluctuating loads, with a small amount of harmonics, suitable for traditional industrial transformation, in compliance with IEC 61921.

SVG (Fully Controlled Active): High cost but excellent performance, fast response (≤ 5ms), high-precision stepless compensation, strong low-voltage ride through capability, suitable for impact/new energy loads, low harmonic, compact design, in line with CE/UL/KEMA, is the preferred choice for high-end markets and new energy projects.

Selection core: Choose capacitor cabinet for steady-state load, SVC for moderate fluctuation, SVG for dynamic/high-end demand, all of which need to match international standards such as IEC.

Know your supplier
Online store
On-time delivery rate
Response time
100.0%
≤4h
Company overview
Workplace: 30000m² Total staff: Highest Annual Export(usD): 100000000
Workplace: 30000m²
Total staff:
Highest Annual Export(usD): 100000000
Services
Business Type: Design/Manufacture/Sales
Main Categories: High Voltage Electrical Apparatus/Low Voltage Electrical Apparatus/Instrument meters/New energy/Tester/Robot
Whole life care manager
Whole-life care management services for equipment procurement, use, maintenance, and after-sales, ensuring safe operation of electrical equipment, continuous control, and worry-free electricity consumption.
The equipment supplier has passed platform qualification certification and technical evaluation, ensuring compliance, professionalism, and reliability from the source.

Related Products

Related Knowledges

  • Main Transformer Accidents and Light Gas Operation Issues
    1. Accident Record (March 19, 2019)At 16:13 on March 19, 2019, the monitoring background reported a light gas action of No. 3 main transformer. In accordance with the Code for Operation of Power Transformers (DL/T572-2010), operation and maintenance (O&M) personnel inspected the on-site condition of No. 3 main transformer.On-site confirmation: The WBH non-electrical protection panel of No. 3 main transformer reported a Phase B light gas action of the transformer body, and the reset was ineff
    02/05/2026
  • Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
    Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
    01/30/2026
  • Neutral point grounding operation mode for 110kV~220kV power grid transformers
    The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
    01/29/2026
  • Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
    Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
    01/29/2026
  • Why Must a Transformer Core Be Grounded at Only One Point? Isn't Multi-Point Grounding More Reliable?
    Why Does the Transformer Core Need to Be Grounded?During operation, the transformer core, along with the metal structures, parts, and components that fix the core and windings, are all situated in a strong electric field. Under the influence of this electric field, they acquire a relatively high potential with respect to ground. If the core is not grounded, a potential difference will exist between the core and the grounded clamping structures and tank, which may lead to intermittent discharge.I
    01/29/2026
  • Understanding Transformer Neutral Grounding
    I. What is a Neutral Point?In transformers and generators, the neutral point is a specific point in the winding where the absolute voltage between this point and each external terminal is equal. In the diagram below, pointOrepresents the neutral point.II. Why Does the Neutral Point Need Grounding?The electrical connection method between the neutral point and earth in a three-phase AC power system is called theneutral grounding method. This grounding method directly affects:The safety, reliabilit
    01/29/2026

Related Solutions

  • Distribution automation systems solutions
    What are the difficulties in overhead line operation and maintenance?Difficulty one:Overhead lines of distribution network have wide coverage,complicatedterrain,many radiation branches and distributed power supply,resultingin "many line faults and difficulty in fault troubleshooting".Difficulty Two:Manual troubleshooting is time-consuming and laborious.Meanwhile,therunning current,voltage and switching state of the line cannot be graspedin real time,because of the lack of intelligent technical m
    04/22/2025
  • RW8000 DMS Distribution Management System Solutions
    OverviewNowadays, the development trend of power grid is intellectualization. As an important part of power grid, the power distribution system is very close to the customers and it has to run properly. The distribution management system (DMS)played an important role in it.Introduction:RW8000 power distribution management system (DMS) is designed for the smart grids. It is based on real-time application, centered on distribution network operation and management, focusing on the business process
    09/07/2023
  • High-Precision Electrical Parameter Monitoring System Solution
    1.Introduction​With the increasingly stringent requirements for power supply quality in high-end facilities such as precision manufacturing, medical diagnosis, and data centers, traditional power monitoring systems, due to their low sampling accuracy and weak data analysis capabilities, can no longer meet the demand for deep insight and precise management of power quality. In response, we are introducing a new generation ​High-Precision Electrical Parameter Monitoring System. With ​millisecond-l
    09/28/2025
Haven't found the right supplier yet? Let matching verified suppliers find you. Get Quotation Now
Haven't found the right supplier yet? Let matching verified suppliers find you.
Get Quotation Now
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.