• 17.5 kV indoor  vacuum circuit breaker Evolution that Empowers
17.5 kV indoor vacuum circuit breaker Evolution that Empowers
discuss personally
Model
VD4 evo-17.5-1250
Basic info
Brand ABB
Model NO. 17.5 kV indoor vacuum circuit breaker Evolution that Empowers
Rated voltage 17.5kV
Rated normal current 1250A
Rated frequency 50/60Hz
Series VD4 evo
Product Detail

Description:

VD4 evo circuit breakers are used in power distribution systems for controlling and protecting cables, transformer and distribution substations, motors, transformers and capacitor banks. VD4 evo includes a range of sensors for a seamless transition from traditional to digitally connected medium voltage circuit breakers. The integrated sensors enable advanced monitoring and diagnostic features for real-time monitoring of thermal, mechanical, and electrical parameters, allowing remote asset management and thus reducing maintenance cost and contributing to reduced downtime.
VD4 evo is also available in standard configurations without sensors. The flexibility of the design enables future digital upgrades, including sensors, if required.

Features:

  • Full monitoring and diagnostics (M&D) flexibility.
  • Mechanical chain and accessories anomalies detection.
  • Loose connections detection and circuit breaker contacts monitoring.
  • Advanced thermal checks & electrical life.
  • The most compact medium voltage circuit breaker selection for your application.
  • Third-party verified Environmental Product Declaration (EPD) for transparency of the environmental impact of the circuit breaker.
  • QR code for fast retrieval of online documentation.
  • Intuitive dashboard based on the Web browser-based HMI.

 Technical Characteristics:

Scope:

  • Withdrawable and fixed medium voltage circuit breakers for primary distribution.
  • The digital evolution of the IEC indoor vacuum circuit breaker VD4.
  • VD4 evo p150 17.5 kV, up to 1250 A, 40 kA withdrawable (for UniGear ZS1 650 mm) and fixed.
  • More ratings to be released soon.

Benefits:

  • New intelligence reduces the risk of power outages by 30 percent and increases operation and maintenance efficiencies by as much as 60 percent.
  • Enables reduced operating expenses (OpEx) by reducing outages and maintenance cost.
  • The most compact 17 kV 40 kA breaker, enabling 15 percent of space saving.
  • VD4 evo can be directly integrated with ABB’s ZEE600 SCADA solution enabling a direct cloud connection, or alternatively integrated with a third-party SCADA and gateway.
Know your supplier
ABB
As an authorized distributor of ABB products, we take great pride in our partnership.
Main Categories
High Voltage Electrical Apparatus/Low Voltage Electrical Apparatus
Business Type
Sales
Highest Annual Export (USD)
$580000000
Professional Experience
11 years
Workplace
20000m²
占位
占位
Documents
Public.
Evolution that Empowers
Manual English
PDF
FAQ
Q: What inspections should be performed after a short-circuit fault in a vacuum circuit breaker?
A:
Check contact erosion: Minor erosion is acceptable (cumulative wear ≤3mm), but replace the vacuum interrupter if damage is severe. Test switching time and synchronization: Ensure values meet specifications to prevent operational issues caused by mechanism changes. Clean arc byproducts: Remove debris from the interrupter surface and inspect insulation components for impact damage or cracks.
Q: How to determine if a vacuum interrupter has failed?
A:
Visual inspection: Check for cracks in the glass/ceramic housing or oxidation/discoloration of the internal shield. Vacuum degree detection: Use a high-frequency spark leak detector or professional vacuum degree tester. Replace the interrupter immediately if the vacuum degree decreases. Withstand voltage test: Perform a power frequency withstand voltage test at the rated voltage (e.g., 42kV/1min for 12kV products). Failure indicates the interrupter has failed.
Related Products
Related Knowledges
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
For users, when purchasing a 35kV new energy transformer, choosing between dry-type, mineral oil-filled, or vegetable oil-filled types involves multiple considerations. These include user habits, maintenance-free performance, safety and fire resistance, volume and weight, among others. However, cost differences are undoubtedly one of the most crucial factors.To illustrate the issue intuitively, this paper selects a three-level energy efficiency dual-winding new energy transformer with a rated ca
Ron
07/26/2025
What is the connection group of a transformer?
What is the connection group of a transformer?
Transformer Connection GroupThe connection group of a transformer refers to the phase difference between the primary and secondary voltages or currents. It is determined by the winding directions of the primary and secondary coils, the labeling of their start and end terminals, and the connection mode. Expressed in a clock-like format, there are 12 groups in total, numbered from 0 to 11.The DC method is commonly used to measure the transformer's connection group, mainly to verify whether the con
Vziman
07/26/2025
Working Voltage in Power System
Working Voltage in Power System
Working VoltageThe term "working voltage" refers to the maximum voltage that a device can withstand without sustaining damage or burning out, while ensuring the reliability, safety, and proper operation of both the device and associated circuits.For long-distance power transmission, the use of high voltage is advantageous. In AC systems, maintaining a load power factor as close to unity as possible is also economically necessary. Practically, heavy currents are more challenging to handle than hi
Encyclopedia
07/26/2025
What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is the sequence for powering down the transformer?
What is the sequence for powering down the transformer?
The sequence for shutting down a main transformer is as follows: when de-energizing, the load side should be shut down first, followed by the power supply side. For energizing operations, the reverse order applies: the power supply side is energized first, then the load side. This is because: Energizing from the power supply side to the load side makes it easier to identify the fault range and take prompt judgment and handling measures in case of a fault, preventing the fault from spreading or e
Rockwell
07/26/2025
What are the methods for switching operations of station transformers?
What are the methods for switching operations of station transformers?
Let's take an auxiliary power system with two station transformers as an example. When one station transformer needs to be out of service, there are two operation methods: non-interruptive power supply and instantaneous power interruption. Generally, the method of instantaneous power interruption on the low-voltage side is preferred.The operation method for instantaneous power interruption on the low-voltage side is as follows:Open the 380V power incoming circuit breaker of the corresponding sec
Vziman
07/26/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!