• Arc-proof Air-insulated Switchgear for Primary Distribution  12kV 630...2000A 25kA
Arc-proof Air-insulated Switchgear for Primary Distribution 12kV 630...2000A 25kA
discuss personally
Model
LeanGear ZS9-12
Basic info
Brand ABB
Model NO. Arc-proof Air-insulated Switchgear for Primary Distribution 12kV 630...2000A 25kA
Rated voltage 12kV
Rated frequency 50/60Hz
Series LeanGear ZS9
Product Detail

Description:

LeanGear ZS9 is an arc-proof air-insulated switchgear designed to meet space requirements and ratings of low electrical distribution grids.

It offers optimal safety and reliability standards, consistent with the ABB’s UniGear range of switchgear. With a proven robustness and flexibility,  the LeanGear ZS9 is tested for tropical conditions.

Main benefits:

  • Safety: Increased safety level assured by integrated ducting system against effects of internal arc.
  • Security: Comprehensive interlocks provide optimum protection for both personnel and equipment.
  • Space: Maximum functionality in a compact design with reduced footprint and height.
  • Service: Ease of service and operation by personnel as switchgear and cable termination height are ergonomically designed.
  • Speed: Minimal service downtime attributable to modular circuit breaker design and built-in features that eliminate use of special handling tools.
  •  Strength: Robust panel structure that is proven against external mechanical impacts.

Main features:

  • Type-tested to IEC standard by STL lab.
  • Internal arc classification IAC AFLR 25kA 1s.
  • Classified as LSC2B, PM.
  • Up to 1250A, proven for severe climatic conditions compliant to IEC 62271-304 Class 2.
  • CB racking with closed door.
  • Cable termination height of 700 mm.
  •  IP4X degree of protection.
  • Extensible on both sides.
  • Integrate with ABB Relion® series relay for protection and control.
  •  For Higher Altitude contact ABB.

VInd/L circuit breaker:

  • Floor-rolling circuit breaker.
  • Suitable for E2, M2, and C2 endurance class application.
  •  Integral spring charging handle.
  •  Built-in mechanical anti-pumping device.

Single line diagram of typical units:

Typical feeder unit:

 A: Circuit breaker compartment
 B: Busbar compartment
 C: Cable compartment
 D: Low voltage compartment
 E: Integral panel gas duct

Know your supplier
ABB
As an authorized distributor of ABB products, we take great pride in our partnership.
Main Categories
High Voltage Electrical Apparatus/Low Voltage Electrical Apparatus
Business Type
Sales
Highest Annual Export (USD)
$580000000
Professional Experience
11 years
Workplace
20000m²
占位
占位
Documents
Public.
LeanGear ZS9 Arc-proof Air-insulated Switchgear for Primary Distribution
Manual English
PDF
FAQ
Q: What support and services does ABB provide for installation, commissioning, and after-sales maintenance?
A:
ABB provides comprehensive support services including installation, commissioning, and after-sales maintenance. Our team of experts ensures smooth deployment and ongoing support to maximize the performance and longevity of our switchgear products.
Q: What smart solutions are available for ABB’s AIS portfolio?
A:
ABB’s switchgear smart solutions are designed to help our customers make data-driven decisions. Our customers can benefit from a wide range monitoring, diagnostic, automation and control features for their ABB’s air-insulated medium voltage switchgear. Contact our sales team to learn more about ABB’s smart solutions for each of our switchgear.
Related Products
Related Knowledges
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
For users, when purchasing a 35kV new energy transformer, choosing between dry-type, mineral oil-filled, or vegetable oil-filled types involves multiple considerations. These include user habits, maintenance-free performance, safety and fire resistance, volume and weight, among others. However, cost differences are undoubtedly one of the most crucial factors.To illustrate the issue intuitively, this paper selects a three-level energy efficiency dual-winding new energy transformer with a rated ca
Ron
07/26/2025
What is the connection group of a transformer?
What is the connection group of a transformer?
Transformer Connection GroupThe connection group of a transformer refers to the phase difference between the primary and secondary voltages or currents. It is determined by the winding directions of the primary and secondary coils, the labeling of their start and end terminals, and the connection mode. Expressed in a clock-like format, there are 12 groups in total, numbered from 0 to 11.The DC method is commonly used to measure the transformer's connection group, mainly to verify whether the con
Vziman
07/26/2025
Working Voltage in Power System
Working Voltage in Power System
Working VoltageThe term "working voltage" refers to the maximum voltage that a device can withstand without sustaining damage or burning out, while ensuring the reliability, safety, and proper operation of both the device and associated circuits.For long-distance power transmission, the use of high voltage is advantageous. In AC systems, maintaining a load power factor as close to unity as possible is also economically necessary. Practically, heavy currents are more challenging to handle than hi
Encyclopedia
07/26/2025
What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is the sequence for powering down the transformer?
What is the sequence for powering down the transformer?
The sequence for shutting down a main transformer is as follows: when de-energizing, the load side should be shut down first, followed by the power supply side. For energizing operations, the reverse order applies: the power supply side is energized first, then the load side. This is because: Energizing from the power supply side to the load side makes it easier to identify the fault range and take prompt judgment and handling measures in case of a fault, preventing the fault from spreading or e
Rockwell
07/26/2025
What are the methods for switching operations of station transformers?
What are the methods for switching operations of station transformers?
Let's take an auxiliary power system with two station transformers as an example. When one station transformer needs to be out of service, there are two operation methods: non-interruptive power supply and instantaneous power interruption. Generally, the method of instantaneous power interruption on the low-voltage side is preferred.The operation method for instantaneous power interruption on the low-voltage side is as follows:Open the 380V power incoming circuit breaker of the corresponding sec
Vziman
07/26/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!