• Transformers for dry energy storage
Transformers for dry energy storage
discuss personally
Model
SGEC-1000/24
Basic info
Brand ROCKWILL
Model NO. Transformers for dry energy storage
Rated voltage 24kV
Rated frequency 50/60Hz
Series SGEC
Product Detail

Product Overview

Transformers for dry energy storage are an important part of energy storage power stations, which are used to convert and store electrical energy during the trough period of the power grid and release it when needed, which can effectively play the role of peak shaving and valley filling.

Feature

  • Improve generator set utilization and achieve more stable performance:With the development of social economy and the improvement of people's living standards, the peak-valley load difference of the power grid has been increasing year by year. Generator sets, especially thermal power units, have low utilization hours. The power grid shows the characteristics of sufficient electricity but insufficient power, and power shortages occur during the peak electricity consumption periods in summer and winter.

  • Lower cost, easy installation and maintenance:Large-scale energy storage power stations play an obvious role in peak shaving and valley filling for the power grid. They will become an important means of grid peak regulation in the future and have broad application prospects. In addition, dry-type energy storage transformers can also serve as a backup part of cold loads. They are thus widely used in energy storage power stations, metallurgical industry, petrochemical industry, cement manufacturing, water supply, sewage treatment, mining industry, papermaking, pharmaceuticals, transmission machinery, wind turbines, wind tunnel tests, etc. Dry-type transformers are small in size and suitable for "fireproof and explosion-proof" occasions.

Basic parameters

Note: The above are general parameters, if there are different parameter requirements, they can be customized!

Know your supplier
ROCKWILL
Rockwill Electric Group Global Manufacturer of High voltage and medium-voltage power equipment and smart grid solutions. Headquartered in Wenzhou, China. Serving 100+ countries with quality, innovation, and trust. What We Offer: • HV-MV switchgear (VCB, SF₆ circuit breakers, RMU, GIS) • Distribution transformers and substations • Smart grid and monitoring systems • Solar, wind, EV charging, and energy storage solutions • EPC turnkey power projects Certified: ISO 9001 / ISO 14001 / ISO 45001
Main Categories
High Voltage Electrical Apparatus
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150,000,000
Professional Experience
16 years
Workplace
108000m²m²
占位
占位
Related Knowledges
Key Points of Online Monitoring Technology for Zinc Oxide Surge Arresters
Key Points of Online Monitoring Technology for Zinc Oxide Surge Arresters
1 Architecture of the Online Monitoring System for Zinc Oxide Surge ArrestersThe online monitoring system for zinc oxide surge arresters comprises three layers: the station control layer, bay layer, and process layer.Station Control Layer: Includes a monitoring center, a Global Positioning System (GPS) clock, and a B - code clock source.Bay Layer: Consists of online monitoring Intelligent Electronic Devices (IEDs).Process Layer: Features monitoring terminals for Potential Transformers (PTs) and
Oliver Watts
07/30/2025
Improvement and Application of the Test Device for Surge Arrester Online Monitor
Improvement and Application of the Test Device for Surge Arrester Online Monitor
1 Significance of Surge Arrester Online Monitors1.1 Enhance Power System Safety, Reduce Lightning DamageDuring lightning strikes, surge arresters play a core role in discharging overvoltage. Online monitors ensure arrester stability, detect potential faults in real - time, and trigger alarms for timely intervention—effectively reducing lightning - induced damage to power equipment and systems, and maintaining stable operation.1.2 Real - Time Status Monitoring, Improve Maintenance Efficienc
Edwiin
07/30/2025
Design of Monitoring System for Surge Arrester in GIS Cubicle of 10kV Power Distribution System for High-Speed Railways
Design of Monitoring System for Surge Arrester in GIS Cubicle of 10kV Power Distribution System for High-Speed Railways
1 Research BackgroundMetal - oxide surge arresters, sealed in cabinets, bear system voltage continuously, risking aging failures, even breakdowns/explosions causing electrical fires. Thus, regular inspection/maintenance is needed. Traditional 3–5 - year - cycle detection (power cut, arrester removal for tests; reinstallation if replaced) poses safety risks and faces space/environment - based standard - grasping difficulties.2 Monitoring Principle of 10kV GIS Cabinet Surge ArresterTo ensure
Dyson
07/30/2025
Can a power transformer designed for 50Hz operate normally at a frequency of 60Hz?
Can a power transformer designed for 50Hz operate normally at a frequency of 60Hz?
Can a 50Hz-Designed Power Transformer Operate on 60Hz Grid?If a power transformer is designed and built for 50Hz, can it run on a 60Hz grid? If so, how do its key performance parameters change?Key Parameter ChangesShort-Circuit Impedance:For a given transformer (same voltage and capacity), short-circuit impedance is proportional to frequency. Thus, a 50Hz-designed unit operating at 60Hz sees a 20% increase—higher frequency intensifies alternating leakage field opposition to current.No-Load
Vziman
07/29/2025
What are the common faults of overhead cables?
What are the common faults of overhead cables?
Overhead cables, due to their exposure to external environments, are subject to various influences that can lead to different types of faults. Below are some common types of faults in overhead cables and their causes:1. Mechanical DamageCaused by external forces such as falling trees, vehicle collisions, or construction accidents.Prolonged vibrations or swinging can also cause material fatigue in cables.2. Weather-Related FaultsLightning Strikes: Direct hits or nearby lightning strikes can cause
Felix Spark
07/29/2025
An Innovative Photoelectromagnetic Cable Eccentricity Measuring Instrument
An Innovative Photoelectromagnetic Cable Eccentricity Measuring Instrument
A core challenge in online cable eccentricity measurement is the cable’s high - speed motion. This requires non - contact measurement equipment that can handle cable jitter. X - ray cable eccentricimeters, based on optical transmission imaging, measure multi - layer contour dimensions to calculate the geometric center of conductors relative to insulation eccentricity. However, they have drawbacks: slow measurement speed (only a few times per second), increased errors from cable jitter, and
Oliver Watts
07/29/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!