• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What is a Vacuum Switchgear?

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China


What is a Vacuum Switchgear?


Vacuum Switchgear Definition


Vacuum switchgear is defined as a type of electrical switchgear that uses a vacuum as the arc quenching medium, providing high reliability and low maintenance.


Dielectric Strength


For a given contact gap, vacuum provides, about eight times more dielectric strength than air and four times more dielectric strength than SF6 gas at one bar. As the dielectric strength is so high, the contact gap of vacuum circuit breaker can be maintained very small. In this small contact gap, arc quenching is safely possible due to high dielectric strength and also vacuum has the fast recovery strength after full arc interruption to its full dielectric value at current zero. This makes, vacuum switchgear, most suitable for capacitor switching.


Low Arc Energy


The energy dissipated during an arc in a vacuum is about one-tenth of that in oil and one-fourth of that in SF6 gas. This low energy dissipation is due to the short interruption time and small arc length, both resulting from the small contact gap. This means vacuum switchgear experiences minimal contact erosion, making it almost maintenance-free. Additionally, breaking a current requires less energy in vacuum circuit breaker compared to air circuit breaker and oil circuit breaker.


Simple Driving Mechanism


In SF6, oil and air circuit breaker, movement of contacts is highly resisted by highly compressed medium of arc quenching chamber. But in vacuum switchgear, there is no medium, and also the movement of contacts is quite less due to its small contacts gap, hence driving energy required is much smaller, in this circuit breaker. That is why the simple spring-spring operating mechanism is sufficient for this switchgear system, no need of hydraulic and pneumatic mechanism. Simpler driving mechanism gives a high mechanical life of vacuum switchgear.


Rapid Arc Quenching


During opening of contacts in current carrying condition, metal vapour is produced between the contacts, and this metal vapour provides a path through which electric current continuous to flow until the next current zero. This phenomenon is also known a vacuum arc. This arc is extinguished near the current zero, and the conductive metal vapor is re-condensed on the contact surface in a matter of microseconds. It has been observed that only 1% of the vapor is re-condensed on arc chamber’s side wall, and 99% of vapor re-condensed on the contact surface from where it was vaporized.


From the above discussion, it is almost clear that the dielectric strength of vacuum switchgear recovers very fast and contact erosion is almost negligible.


Up to 10 KA, the arc in vacuum switchgear remains diffused, appearing as vapor discharge over the entire contact surface. Above 10 KA, the arc concentrates at the center of the contact surface due to its magnetic field, causing overheating. This issue can be resolved by designing contact surfaces to allow the arc to travel across the surface area. Manufacturers use various designs to achieve this, ensuring minimal and uniform contact erosion.

 

Give a tip and encourage the author!
Recommended
What are the causes of failures in low-voltage switchgear circuit breakers themselves?
What are the causes of failures in low-voltage switchgear circuit breakers themselves?
Based on years of field statistics on switchgear accidents, combined with analysis focusing on the circuit breaker itself, the main causes have been identified as: failure of operation mechanism; insulation faults; poor breaking and closing performance; and poor conductivity.1.Failure of Operation MechanismFailure of operation mechanism manifests as delayed operation or unintended operation. Since the most basic and important function of a high-voltage circuit breaker is to operate correctly and
Felix Spark
11/04/2025
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
Compact Air-Insulated RMUs for Retrofit & New Substations
Compact Air-Insulated RMUs for Retrofit & New Substations
Air-insulated ring main units (RMUs) are defined in contrast to compact gas-insulated RMUs. Early air-insulated RMUs used vacuum or puffer-type load switches from VEI, as well as gas-generating load switches. Later, with the widespread adoption of the SM6 series, it became the mainstream solution for air-insulated RMUs. Similar to other air-insulated RMUs, the key difference lies in replacing the load switch with an SF6-encapsulated type—where the three-position switch for load and grounding is
Echo
11/03/2025
Climate-Neutral 24kV Switchgear for Sustainable Grids | Nu1
Climate-Neutral 24kV Switchgear for Sustainable Grids | Nu1
Expected service life of 30–40 years, front access, compact design equivalent to SF6-GIS, no SF6 gas handling – climate-friendly, 100% dry air insulation. The Nu1 switchgear is metal-enclosed, gas-insulated, featuring a withdrawable circuit breaker design, and has been type-tested according to relevant standards, approved by the internationally recognized STL laboratory.Compliance Standards Switchgear: IEC 62271-1 High-voltage switchgear and controlgear – Part 1: Common specifications for altern
Edwiin
11/03/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.