• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Generator Excitation Protection

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

Loss of Excitation Definition


Loss of excitation in a generator occurs when the excitation system fails, causing the generator to run above synchronous speed.


Induction Generator Mode


Without excitation, the generator becomes an induction generator, which can lead to overheating and overloading issues.


Undercurrent Relay Protection


An undercurrent relay can protect against loss of field by operating when the excitation current falls below a certain value.


This relay operates if the excitation current falls below a set value, typically 8% of the rated full load current. If the field circuit remains intact but the exciter fails, an induced current at slip frequency can cause the relay to pick up and drop off. This can be managed by adjusting the relay settings.


e5c0485cce518a4b5ad976d63f3154c2.jpeg


A setting of 5% of the normal full load current is recommended. The undercurrent relay has a normally closed contact that stays open while the relay coil is energised by the shunted excitation current. When the excitation system fails, the relay coil de-energises, closing the contact and supplying power to timing relay T1.


As the relay coil is energized, the normally open contact of this relay T1 is closed. This contact closes the supply across another timing relay T2 with an adjustable pickup time delay of 2 to 10 seconds. Relay T1 is time delayed on drop off to stabilize scheme again slip frequency effect. Relay T2 closes its contacts after the prescribed time delay to either shut down the set or initiate an alarm. It is time delayed on pickup to prevent spurious operation of the scheme during an external fault.


Timing Relays for Stability


Using timing relays helps stablise the protection scheme against slip frequency effects and prevent false operations.


We know that system voltage is the main indication of system stability. Therefore the offset mho relay is arranged to shut the machine down instantaneously when operation of generator is accompanied by a system voltage collapse. The drop in system voltage is detected by an under voltage relay which is set to approximately 70 % of normal rated system voltage. The offset mho relay is arranged to initiate load shedding to the system up to a safe value and then to initiate a master tripping relay after a predetermined time.


953b4266b512e85dead357fb6efabfe8.jpeg


Advanced Protection for Large Generators


For larger generators, advanced schemes with offset mho relays and under voltage relays are used to maintain system stability through load shedding and master tripping relays.

 

Give a tip and encourage the author!
Recommended
What are the causes of failures in low-voltage switchgear circuit breakers themselves?
What are the causes of failures in low-voltage switchgear circuit breakers themselves?
Based on years of field statistics on switchgear accidents, combined with analysis focusing on the circuit breaker itself, the main causes have been identified as: failure of operation mechanism; insulation faults; poor breaking and closing performance; and poor conductivity.1.Failure of Operation MechanismFailure of operation mechanism manifests as delayed operation or unintended operation. Since the most basic and important function of a high-voltage circuit breaker is to operate correctly and
Felix Spark
11/04/2025
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
Compact Air-Insulated RMUs for Retrofit & New Substations
Compact Air-Insulated RMUs for Retrofit & New Substations
Air-insulated ring main units (RMUs) are defined in contrast to compact gas-insulated RMUs. Early air-insulated RMUs used vacuum or puffer-type load switches from VEI, as well as gas-generating load switches. Later, with the widespread adoption of the SM6 series, it became the mainstream solution for air-insulated RMUs. Similar to other air-insulated RMUs, the key difference lies in replacing the load switch with an SF6-encapsulated type—where the three-position switch for load and grounding is
Echo
11/03/2025
Climate-Neutral 24kV Switchgear for Sustainable Grids | Nu1
Climate-Neutral 24kV Switchgear for Sustainable Grids | Nu1
Expected service life of 30–40 years, front access, compact design equivalent to SF6-GIS, no SF6 gas handling – climate-friendly, 100% dry air insulation. The Nu1 switchgear is metal-enclosed, gas-insulated, featuring a withdrawable circuit breaker design, and has been type-tested according to relevant standards, approved by the internationally recognized STL laboratory.Compliance Standards Switchgear: IEC 62271-1 High-voltage switchgear and controlgear – Part 1: Common specifications for altern
Edwiin
11/03/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.