• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Busbar Differential Protection

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

Busbar Differential Protection Definition

Busbar differential protection is a scheme that quickly isolates faults by comparing currents entering and leaving the busbar using Kirchoff’s current law.

Current Differential Protection

The scheme of busbar protection, involves, Kirchoff’s current law, which states that, total current entering an electrical node is exactly equal to total current leaving the node.Hence, total current entering into a bus section is equal to total current leaving the bus section.

The principle of differential busbar protection is very simple. Here, secondaries of CTs are connected parallel. That means, S1 terminals of all CTs connected together and forms a bus wire. Similarly S2 terminals of all CTs connected together to form another bus wire.A tripping relay is connected across these two bus wires.

3e68e34ea07b7e7cc94ab4b315f6b9b3.jpeg

 Here, in the figure above we assume that at normal condition feed, A, B, C, D, E and F carries current IA, IB, IC, ID, IE and IF.Now, according to Kirchoff`s current law,

 Essentially all the CTs used for differential busbar protection are of same current ratio. Hence, the summation of all secondary currents must also be equal to zero.

f40a324d07bf5f3a83452a70d9e14946.jpeg

 Now, say current through the relay connected in parallel with all CT secondaries, is iR, and iA, iB, iC, iD, iE and iF are secondary currents.Now, let us apply KCL at node X. As per KCL at node X,

 So, it is clear that under normal condition there is no current flows through the busbar protection tripping relay. This relay is generally referred as Relay 87. Now, say fault is occurred at any of the feeders, outside the protected zone.

In that case, the faulty current will pass through primary of the CT of that feeder. This fault current is contributed by all other feeders connected to the bus. So, contributed part of fault current flows through the corresponding CT of respective feeder. Hence at that faulty condition, if we apply KCL at node K, we will still get, i R = 0

b37aa9f778ad17f50fc7680c352488d0.jpeg

That means, at external faulty condition, there is no current flows through relay 87. Now consider a situation when fault is occurred on the bus itself.At this condition, also the faulty current is contributed by all feeders connected to the bus. Hence, at this condition, sum of all contributed fault current is equal to total faulty current.

Now, at faulty path there is no CT. (in external fault, both fault current and contributed current to the fault by different feeder get CT in their path of flowing).The sum of all secondary currents is no longer zero. It is equal to secondary equivalent of faulty current.Now, if we apply KCL at the nodes, we will get a non zero value of i R.

2ed5231cbc121d168fed634a0053adf0.jpeg

 So at this condition current starts flowing through 87 relay and it makes trip the circuit breaker corresponding to all the feeders connected to this section of the busbar.

As all the incoming and outgoing feeders, connected to this section of bus are tripped, the bus becomes dead.This differential busbar protection scheme is also referred as current differential protection of busbar.

Sectionalized Busbar Protection

During explaining working principle of current differential protection of busbar, we have shown a simple non sectionalized busbar. But in moderate high voltage system electrical bus sectionalized in than one sections to increase stability of the system.

It is done because, fault in one section of bus should not disturb other section of the system. Hence during bus fault, total bus would be interrupted.Let us draw and discuss about protection of busbar with two sections.

Here, bus section A or zone A is bounded by CT 1, CT2 and CT3 where CT1 and CT2 are feeder CTs and CT3 is bus CT.

e3123e166b88acfa71b4ed3bd74a8cf6.jpeg

Voltage Differential Protection

The current differential scheme is sensitive only when the CTs do not get saturated and maintain same current ratio, phase angle error under maximum faulty condition. This is usually not 80, particularly, in the case of an external fault on one of the feeders. The CT on the faulty feeder may be saturated by total current and consequently it will have very large errors. Due to this large error, the summation of secondary current of all CTs in a particular zone may not be zero.

 So there may be a high chance of tripping of all circuit breakers associated with this protection zone even in the case of an external large fault. To prevent this maloperation of current differential busbar protection, the 87 relays are provided with high pick up current and enough time delay.The greatest troublesome cause of current transformer saturation is the transient dc component of the short circuit current.

This difficulties can be overcome by using air core CTs. This current transformer is also called linear coupler. As the core of the CT does not use iron the secondary characteristic of these CTs, is straight line.In voltage differential busbar protection the CTs of all incoming and outgoing feeders are connected in series instead of connecting them in parallel.

The secondaries of all CTs and differential relay form a closed loop. If polarity of all CTs are properly matched, the sum of voltage across all CT secondaries is zero. Hence there would be no resultant voltage appears across the differential relay. When a buss fault occurs, sum of the all CT secondary voltage is no longer zero. Hence, there would be current circulate in the loop due to the resultant voltage. 

As this loop current also flows through the differential relay, the relay is operated to trip all the circuit beaker associated with protected bus zone. Except when ground fault current is severally limited by neutral impedance there is usually no selectivity problem when such a problem exists, it is solved by use of an additional more sensitive relaying equipment including a supervising protective relay.

c5422240ffe35c4c7078cfa6909db7fb.jpeg


Importance of Selective Isolation

Modern systems need to isolate only the faulty sections to minimize power interruptions and ensure quick fault clearance. 


Give a tip and encourage the author!
Recommended
What are the causes of failures in low-voltage switchgear circuit breakers themselves?
What are the causes of failures in low-voltage switchgear circuit breakers themselves?
Based on years of field statistics on switchgear accidents, combined with analysis focusing on the circuit breaker itself, the main causes have been identified as: failure of operation mechanism; insulation faults; poor breaking and closing performance; and poor conductivity.1.Failure of Operation MechanismFailure of operation mechanism manifests as delayed operation or unintended operation. Since the most basic and important function of a high-voltage circuit breaker is to operate correctly and
Felix Spark
11/04/2025
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
Compact Air-Insulated RMUs for Retrofit & New Substations
Compact Air-Insulated RMUs for Retrofit & New Substations
Air-insulated ring main units (RMUs) are defined in contrast to compact gas-insulated RMUs. Early air-insulated RMUs used vacuum or puffer-type load switches from VEI, as well as gas-generating load switches. Later, with the widespread adoption of the SM6 series, it became the mainstream solution for air-insulated RMUs. Similar to other air-insulated RMUs, the key difference lies in replacing the load switch with an SF6-encapsulated type—where the three-position switch for load and grounding is
Echo
11/03/2025
Climate-Neutral 24kV Switchgear for Sustainable Grids | Nu1
Climate-Neutral 24kV Switchgear for Sustainable Grids | Nu1
Expected service life of 30–40 years, front access, compact design equivalent to SF6-GIS, no SF6 gas handling – climate-friendly, 100% dry air insulation. The Nu1 switchgear is metal-enclosed, gas-insulated, featuring a withdrawable circuit breaker design, and has been type-tested according to relevant standards, approved by the internationally recognized STL laboratory.Compliance Standards Switchgear: IEC 62271-1 High-voltage switchgear and controlgear – Part 1: Common specifications for altern
Edwiin
11/03/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.