• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What is a Shunt Capacitor?

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China


What is a Shunt Capacitor?


Shunt Capacitor Definition


A shunt capacitor is defined as a device used to improve power factor by providing capacitive reactance to counteract inductive reactance in electrical power systems.


Power Factor Compensation


Shunt capacitors help improve the power factor, which reduces line losses and improves voltage regulation in power systems.


Capacitor Bank


The capacitor reactance is generally applied to the system by using static capacitor in shut or series with system. Instead of using a single unit of capacitor per phase of the system, it is quite effective to use a bank of capacitor units, in the view of maintenance and erection. This group or bank of capacitor units is known as capacitor bank.

 

There are mainly two categories of capacitor bank according to their connection arrangements.

 


  • Shunt capacitor.

  • Series capacitor.


The Shunt capacitor is very commonly used.


Connection of Shunt Capacitor Bank


The capacitor bank can be connected to the system either in delta or in star. In star connection, the neutral point may be grounded or not depending upon protection scheme for capacitor bank adopted. In some cases the capacitor bank is formed by double star formation.Generally large capacitor bank in electrical substation is connected in star.


The grounded star connected bank has some specific advantages, such as,


  • Reduced recovery voltage on circuit breaker for normal repetitive capacitor switching delay.



  • Better surge protection.



  • Comparatively reduced over voltage phenomenon.


  • Lesser cost of installation.


In a solidly grounded system, the voltage of all three phases of a capacitor bank remains fixed, even during two-phase operation.


Location Considerations


Ideally, a capacitor bank should be placed near reactive loads to minimize reactive power transmission across the network. When a capacitor and load are connected together, they disconnect simultaneously, preventing overcompensation. However, it’s not practical or economical to connect a capacitor to each individual load due to varying load sizes and availability of capacitors. Additionally, not all loads are connected continuously, so the capacitors may not be fully utilized.


Hence, capacitor, is not installed at small load but for medium and large loads, capacitor bank can be installed at consumer own premises. Although the inductive loads of medium and large bulk consumers are compensated, but still there would be considerable amount of VAR demand originated from different uncompensated small loads connected to the system. In addition to that, inductance of line and transformer also contribute VAR to the system. On viewing of these difficulties, instead of connecting capacitor to each load, large capacitor bank is installed at main distribution sub-station or secondary grid sub-station.

  


Give a tip and encourage the author!
Recommended
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
Ring main units (RMUs) are used in secondary power distribution, directly connecting to end-users such as residential communities, construction sites, commercial buildings, highways, etc.In a residential substation, the RMU introduces 12 kV medium voltage, which is then stepped down to 380 V low voltage through transformers. The low-voltage switchgear distributes electrical energy to various user units. For a 1250 kVA distribution transformer in a residential community, the medium-voltage ring m
James
11/03/2025
Why Monitoring Accuracy Matters in Power Quality Systems
Why Monitoring Accuracy Matters in Power Quality Systems
The Critical Role of Monitoring Accuracy in Power Quality Online DevicesThe measurement accuracy of online power quality monitoring devices is the core of the power system’s “perception capability,” directly determining the safety, economy, stability, and reliability of power supply to users. Inadequate accuracy leads to misjudgment, incorrect control, and flawed decision-making—potentially causing equipment damage, economic losses, or even grid failures. Conversely, high accuracy enables precis
Oliver Watts
10/30/2025
How Does Power Dispatching Ensure Grid Stability and Efficiency?
How Does Power Dispatching Ensure Grid Stability and Efficiency?
Electric Power Dispatching in Modern Power SystemsThe power system is a critical infrastructure of modern society, providing essential electrical energy for industrial, commercial, and residential use. As the core of power system operation and management, electric power dispatching aims to meet electricity demand while ensuring grid stability and economic efficiency.1. Basic Principles of Electric Power DispatchingThe fundamental principle of power dispatching is to balance supply and demand by
Echo
10/30/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.