• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


A Low-Noise High-Gain Broadband Transformer-Based Inverter-Based Transimpedance Amplifier

IEEE Xplore
IEEE Xplore
Field: Electrical Standards
0
Canada

In this paper, a transformer-based bandwidth (BW) extension technique is employed to improve the BW, noise, and silicon area of inverter-based transimpedance amplifiers (TIAs) even when they use inductive peaking. A TIA based on the proposed technique, designed and laid out in a 16-nm FinFET process, demonstrates a 36% increased in BW, a 19% reduction in input-referred noise, and a 57% reduction in silicon area compared to the conventional TIA with inductive peaking. In the proposed TIA architecture, inclusion of a transformer in the forward path compensates partially for the parasitic capacitances of the inverter and relaxes the transimpedance limit of the conventional TIA. The proposed technique also lowers the input-referred current noise spectrum of the TIA. Post-layout in companion with electromagnetic (EM) simulations and statistical analysis are employed to verify the effectiveness of the proposed architecture. Simulation results show that the TIA achieves a transimpedance gain of 58 dB   Ω   , a BW of 17.4 GHz, an input-referred noise of 17.4 pA/sqrt (Hz), and an eye-opening of 20 mV at a data-rate of 64 Gbps PAM4 and at a bit-error-rate (BER) of 1E-6. The whole TIA chain is expected to consume 19 mW and occupies an active area of 0.023 mm 2 .

Source: IEEE Xplore

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
Rectifier vs Power Transformer: Key Differences
Rectifier vs Power Transformer: Key Differences
Differences Between Rectifier Transformers and Power TransformersRectifier transformers and power transformers both belong to the transformer family, but they differ fundamentally in application and functional characteristics. The transformers commonly seen on utility poles are typically power transformers, while those supplying electrolytic cells or electroplating equipment in factories are usually rectifier transformers. Understanding their differences requires examining three aspects: working
Echo
10/27/2025
3D Wound-Core Transformers in China: Technical Trends for Utility Companies
3D Wound-Core Transformers in China: Technical Trends for Utility Companies
Technical Requirements and Development Trends for Distribution Transformers Low losses, especially low no-load losses; highlighting energy-saving performance. Low noise, particularly during no-load operation, to meet environmental protection standards. Fully sealed designto prevent transformer oil from contacting external air, enabling maintenance-free operation. Integrated protection devices within the tank, achieving miniaturization; reducing transformer size for easier on-site installation. C
Echo
10/20/2025
What are the application advantages and development trends of pad-mounted transformers?
What are the application advantages and development trends of pad-mounted transformers?
In the reconstruction and expansion of modern urban power grids, to optimize the power supply layout, it is required that high - voltage directly enters urban areas, medium - voltage penetrates deep into load centers to shorten the low - voltage power supply radius, and underground cable laying is mostly adopted for urban main roads. Electrical equipment needs to meet the requirements of intelligence, miniaturization, high reliability and aesthetics. The compact substation is widely used in urba
Echo
06/17/2025
Thermal Optimization Design for Control Cabinets of Pad-Mounted Transformers in Offshore Wind Turbines
Thermal Optimization Design for Control Cabinets of Pad-Mounted Transformers in Offshore Wind Turbines
Global energy transition boosts offshore wind power, yet complex marine environments challenge turbine reliability. The heat - dissipation of pad - mounted transformer control cabinets (PMTCCs) is critical—undissipated heat causes component damage. Optimizing PMTCC heat dissipation improves turbine efficiency, but research mostly focuses on onshore wind farms, neglecting offshore ones. Thus, design PMTCCs for offshore conditions to enhance safety.1 PMTCC Heat - Dissipation Optimization
Dyson
06/17/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.