How do you calculate synchronous speed from frequency in an induction machine?

Encyclopedia
11/14/2024

The synchronous speed (Synchronous Speed) of an induction motor is the speed at which the motor would operate under ideal conditions (i.e., with no slip). The synchronous speed depends on the frequency of the power supply and the number of pole pairs in the motor. Here is how to calculate the synchronous speed:

Calculation Formula

The synchronous speed ns can be calculated using the following formula:

ns= (120×f)/p

where:

  • ns is the synchronous speed, measured in revolutions per minute (RPM).

  • f is the frequency of the power supply, measured in hertz (Hz).

  • p is the number of pole pairs in the motor.

Explanation

Power Supply Frequency f:

The power supply frequency is the frequency of the alternating current supplied to the motor, typically 50 Hz or 60 Hz.

Number of Pole Pairs p:

The number of pole pairs is the number of pairs of magnetic poles in the stator winding of the motor. For example, a 4-pole motor has 2 pole pairs, so p=2.

Synchronous Speed ns:

The synchronous speed is the speed at which the motor would run under ideal conditions (i.e., with zero slip). In actual operation, the motor's actual speed will be slightly less than the synchronous speed due to slip.

Synchronous Speed for Different Pole Pairs

The following table shows the synchronous speeds for common numbers of pole pairs, assuming power supply frequencies of 50 Hz and 60 Hz:

image.png

Summary

By using the formula ns= (120×f)/p, you can easily calculate the synchronous speed of an induction motor based on the power supply frequency and the number of pole pairs. The synchronous speed is an important parameter in motor design and performance analysis, helping to understand the motor's operating characteristics.

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
For users, when purchasing a 35kV new energy transformer, choosing between dry-type, mineral oil-filled, or vegetable oil-filled types involves multiple considerations. These include user habits, maintenance-free performance, safety and fire resistance, volume and weight, among others. However, cost differences are undoubtedly one of the most crucial factors.To illustrate the issue intuitively, this paper selects a three-level energy efficiency dual-winding new energy transformer with a rated ca
Ron
07/26/2025
What is the connection group of a transformer?
What is the connection group of a transformer?
Transformer Connection GroupThe connection group of a transformer refers to the phase difference between the primary and secondary voltages or currents. It is determined by the winding directions of the primary and secondary coils, the labeling of their start and end terminals, and the connection mode. Expressed in a clock-like format, there are 12 groups in total, numbered from 0 to 11.The DC method is commonly used to measure the transformer's connection group, mainly to verify whether the con
Vziman
07/26/2025
What is the sequence for powering down the transformer?
What is the sequence for powering down the transformer?
The sequence for shutting down a main transformer is as follows: when de-energizing, the load side should be shut down first, followed by the power supply side. For energizing operations, the reverse order applies: the power supply side is energized first, then the load side. This is because: Energizing from the power supply side to the load side makes it easier to identify the fault range and take prompt judgment and handling measures in case of a fault, preventing the fault from spreading or e
Rockwell
07/26/2025
What are the methods for switching operations of station transformers?
What are the methods for switching operations of station transformers?
Let's take an auxiliary power system with two station transformers as an example. When one station transformer needs to be out of service, there are two operation methods: non-interruptive power supply and instantaneous power interruption. Generally, the method of instantaneous power interruption on the low-voltage side is preferred.The operation method for instantaneous power interruption on the low-voltage side is as follows:Open the 380V power incoming circuit breaker of the corresponding sec
Vziman
07/26/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!