Dynamic Braking or Rheostatic Braking of DC Motor

Edwiin
05/27/2025

Dynamic Braking Principles in DC Motors
In dynamic braking, a braking resistor Rb is connected across the armature immediately after disconnecting the DC motor from the supply. The motor then functions as a generator, producing braking torque.
Dynamic Braking Configurations
Two connection methods enable braking operation:
  • Separately Excited/Shunt Motor as a Separately Excited Generator:
    • Flux is maintained constant for consistent braking performance.
  • Self-Excited Shunt Generator:
    • Field winding is connected in parallel with the armature, relying on residual magnetism for excitation.
The connection diagram for dynamic braking of a separately excited DC motor is shown below:
When the machine works in the motoring mode.
The connection diagram is shown below when braking with separate excitation is done.
The connection diagram is shown below when braking with self-excitation is performed.
Dynamic Braking (Rheostatic Braking) Principles
This method is also termed rheostatic braking, as an external braking resistor Rb is connected across the armature terminals for electrical braking. During braking, when the motor operates as a generator, the kinetic energy stored in the machine's rotating components and connected load is converted to electrical energy. This energy is dissipated as heat in the braking resistor Rb and armature circuit resistance Ra.
The connection diagram for dynamic braking of a DC shunt motor is shown below:
When the machine is working in the motoring mode.
The connection diagram of shunt motor braking with self and separate excitation is shown in the figure below:
Series Motor Dynamic Braking Configuration
For dynamic braking of a series motor, the motor is first disconnected from the supply. A variable braking resistor Rb (as illustrated below) is then connected in series with the armature, and the field winding connections are reversed.
Also,
Series Motor Self-Excitation in Dynamic Braking
Field connections are reversed to ensure field winding current flows in the original direction (e.g., from S1 to S2), allowing back EMF to maintain residual flux. The machine then functions as a self-excited series generator.
Self-excitation yields slower braking; thus, for rapid braking, the machine is operated in self-excitation mode with a series field resistance to limit current safely.
Dynamic (rheostatic) braking is inefficient: all generated energy dissipates as heat in the resistors.
Edwiin

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
For users, when purchasing a 35kV new energy transformer, choosing between dry-type, mineral oil-filled, or vegetable oil-filled types involves multiple considerations. These include user habits, maintenance-free performance, safety and fire resistance, volume and weight, among others. However, cost differences are undoubtedly one of the most crucial factors.To illustrate the issue intuitively, this paper selects a three-level energy efficiency dual-winding new energy transformer with a rated ca
Ron
07/26/2025
What is the connection group of a transformer?
What is the connection group of a transformer?
Transformer Connection GroupThe connection group of a transformer refers to the phase difference between the primary and secondary voltages or currents. It is determined by the winding directions of the primary and secondary coils, the labeling of their start and end terminals, and the connection mode. Expressed in a clock-like format, there are 12 groups in total, numbered from 0 to 11.The DC method is commonly used to measure the transformer's connection group, mainly to verify whether the con
Vziman
07/26/2025
What is the sequence for powering down the transformer?
What is the sequence for powering down the transformer?
The sequence for shutting down a main transformer is as follows: when de-energizing, the load side should be shut down first, followed by the power supply side. For energizing operations, the reverse order applies: the power supply side is energized first, then the load side. This is because: Energizing from the power supply side to the load side makes it easier to identify the fault range and take prompt judgment and handling measures in case of a fault, preventing the fault from spreading or e
Rockwell
07/26/2025
What are the methods for switching operations of station transformers?
What are the methods for switching operations of station transformers?
Let's take an auxiliary power system with two station transformers as an example. When one station transformer needs to be out of service, there are two operation methods: non-interruptive power supply and instantaneous power interruption. Generally, the method of instantaneous power interruption on the low-voltage side is preferred.The operation method for instantaneous power interruption on the low-voltage side is as follows:Open the 380V power incoming circuit breaker of the corresponding sec
Vziman
07/26/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!