• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Difference Between Real Ground and Virtual Ground

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

Real Ground vs. Virtual Ground: Definitions and Applications

In the realm of electrical engineering, the concepts of real ground and virtual ground play distinct yet essential roles. Real ground establishes a tangible physical connection between the metallic body of an electrical device and the Earth, typically achieved through an Earth Continuity Conductor (ECG), Grounding Electrode Conductor (GEC), or other equivalent means. On the other hand, virtual ground is an abstract concept primarily utilized in operational amplifiers (op - amps). In this context, a specific node within the circuit is considered to have the same electrical potential as the actual ground terminal, despite lacking a direct physical connection to it.

Real Ground

A real ground, also known as actual ground or earth ground, is a fundamental element in electrical systems, representing a direct physical link to the Earth or a common reference point. Its primary function is to enhance safety by providing a low - resistance pathway for fault currents to flow into the ground. This mechanism effectively prevents electrical shocks by diverting potentially hazardous currents away from users and equipment. In circuit schematics, real ground is conventionally denoted by the ground symbol (⏚ or ⏋).

In compliance with the National Electrical Code (NEC) Article 250, all metallic and exposed components of electrical systems must be connected to a ground rod through an Equipment Grounding Conductor (EGC) and a Grounding Electrode Conductor (GEC). This mandatory connection ensures that any unexpected electrical currents resulting from faults are safely channeled into the ground. Additionally, within electrical panels, the neutral wire is commonly bonded to the earth ground, further reinforcing the system's safety and stability. In standard electrical wiring installations, a green - colored or bare conductor is typically employed for grounding purposes, facilitating easy identification.

While the International Electrotechnical Commission (IEC) and BS 7671 standards share the same underlying principles and objectives as the NEC and Canadian Electrical Code (CEC) regarding earthing, they use different terminologies. For example, under these standards, the metallic parts of electrical equipment are connected to an earth plate via an Earth Continuity Conductor (ECC). A wire with a green or green - with - yellow - stripe color is designated for the Protective Earth (PE) function, serving the same critical safety purpose as the grounding conductors specified in other codes.

image.png

In short, V2 does not sink current because the current at node V2 flows through the feedback resistor (Rf) and VOUT due to the high resistance of “R” in the op-amp. Therefore, the V2 node acts as a virtual ground, while V1 is connected to the real ground.

Key Differences Between Real and Virtual Ground

The following comparison table shows the main differences between virtual and real ground.

image.png


Give a tip and encourage the author!
Recommended
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
Ring main units (RMUs) are used in secondary power distribution, directly connecting to end-users such as residential communities, construction sites, commercial buildings, highways, etc.In a residential substation, the RMU introduces 12 kV medium voltage, which is then stepped down to 380 V low voltage through transformers. The low-voltage switchgear distributes electrical energy to various user units. For a 1250 kVA distribution transformer in a residential community, the medium-voltage ring m
James
11/03/2025
Why Monitoring Accuracy Matters in Power Quality Systems
Why Monitoring Accuracy Matters in Power Quality Systems
The Critical Role of Monitoring Accuracy in Power Quality Online DevicesThe measurement accuracy of online power quality monitoring devices is the core of the power system’s “perception capability,” directly determining the safety, economy, stability, and reliability of power supply to users. Inadequate accuracy leads to misjudgment, incorrect control, and flawed decision-making—potentially causing equipment damage, economic losses, or even grid failures. Conversely, high accuracy enables precis
Oliver Watts
10/30/2025
How Does Power Dispatching Ensure Grid Stability and Efficiency?
How Does Power Dispatching Ensure Grid Stability and Efficiency?
Electric Power Dispatching in Modern Power SystemsThe power system is a critical infrastructure of modern society, providing essential electrical energy for industrial, commercial, and residential use. As the core of power system operation and management, electric power dispatching aims to meet electricity demand while ensuring grid stability and economic efficiency.1. Basic Principles of Electric Power DispatchingThe fundamental principle of power dispatching is to balance supply and demand by
Echo
10/30/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.