• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Steam Turbine

Master Electrician
Master Electrician
Field: Basic Electrical
0
China

WechatIMG1767.jpeg

The steam turbine is a favourite prime mover in a steam power generating plants. The steam turbine may be of capacity from 5 megawatts 2000 megawatt.

The advantages of a steam turbine over a diesel engine are as follows.

  1. The size of a steam turbine is much smaller than that of an equivalent diesel engine. The size of a 30-megawatt steam turbine is same as a 5-megawatt diesel engine.

  2. Construction wise the steam turbine is much simpler than a diesel engine. The rotor shaft, blades, steam control valve are the three essential components of a steam turbine.

  3. steam turbine suffers from less vibration than that of diesel engine if the rotating parts of the system correctly installed and aligned.

  4. The speed of a steam turbine can be much higher than that of a diesel engine. The standard speed of a steam turbine used in an electrical generating station is 3600 RPM in USA and 3000 RPM in the UK whereas the highest standard speed of a diesel engine used for the same purpose is 200 RPM.

  5. Control of steam turbine is much simpler than that of a diesel engine. A control valve is utilised for the purpose. The valve is fitted at the inlet line of the steam. This control valve governs the flow of steam to the turbine. There is one stop valve installed before the control valve. The function of stop valve is to block the entire flow of steam to the turbine in the event of any abnormality. The stop valve is an emergency valve.

The steam enters into the turbine at high pressure and temperature. After doing the desired work of rotating the rotor the steam exhausts at much lower pressure and temperature. The steam may enter in the turbine at a pressure and temperature of 1800 Pa, and 1000oF respectively and the pressure and temperature of the exhausting steam may be 1 Pa and 100oF respectively.
Steam Turbine

Working Principle of Steam Turbine

In a reciprocating steam engine, pressurized steam acts on the piston causing mechanical movement of the piston. Ideally, no dynamic action of the steam is utilised in a reciprocating system. But in case of a steam turbine, the dynamic action of suddenly expanded steam is mainly utilised to perform mechanical work.

In a steam turbine the steam in the nozzles expands and hence it gains kinetic energy and losses its pressure. The steam gets kinetic energy during its expansion from its internal enthalpy. The blades of turbine obstruct the momentum of the steam and thereby force the stream to change its direction of flow. In other words, the momentum of steam causes a force on the turbine blades. We can say the momentum of expanding steam is the driving force of a steam turbine.

The expansion of steam and changing of direction of momentum may happen once in a single stage or multiple times in various stages depending upon types of turbine.

When there is only one provision of expansion of steam in a turbine and the pressure of steam remains uniform throughout the process after it is expanded through the nozzles, the turbine is called single stage impulse turbine. In impulse turbine high-pressure, high-temperature steam coming out from nozzle head expands and forms a steam jet which directly strikes on the moving blades, causing rotation of the turbine rotor.

There is another type of turbine in which the steam is expanded throughout the process. Here, the expansion of steam takes place when it passes through the turbine blades. During expansion, the enthalpy of steam converts into kinetic energy and thereby the turbine rotor rotates with propeller action.

This type of turbine is referred as reaction turbine. In this type of turbines, there are two sets of blades. One set is of fixed blades attached to the stationary parts of the turbine and another set is of moving blades attached to the rotor of the turbine. The expansion of steam takes place in the space formed by fixed and moving blades.

Normally a practical turbine has two important components nozzles and blades. The nozzle is a device fitted at the steam inlet of a turbine. The high-temperature, high-pressure steam with negligible kinetic energy gets expanded, losses pressure and hence gets sufficient kinetic energy to perform mechanical work with help of the nozzles.

The Blades of the turbines are also referred as deflectors. This is because the dynamics steam gets deflected when it strikes on the blades. The mechanical energy of expanding steam is extracted at turbine blades.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
Busbar-Side Grounding for 24kV Eco-Friendly RMUs: Why & How
Busbar-Side Grounding for 24kV Eco-Friendly RMUs: Why & How
Solid insulation assistance combined with dry air insulation is a development direction for 24 kV ring main units. By balancing insulation performance and compactness, the use of solid auxiliary insulation allows passing insulation tests without significantly increasing phase-to-phase or phase-to-ground dimensions. Encapsulation of the pole can address the insulation of the vacuum interrupter and its connected conductors.For the 24 kV outgoing busbar, with the phase spacing maintained at 110 mm,
Dyson
11/03/2025
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
Ring main units (RMUs) are used in secondary power distribution, directly connecting to end-users such as residential communities, construction sites, commercial buildings, highways, etc.In a residential substation, the RMU introduces 12 kV medium voltage, which is then stepped down to 380 V low voltage through transformers. The low-voltage switchgear distributes electrical energy to various user units. For a 1250 kVA distribution transformer in a residential community, the medium-voltage ring m
James
11/03/2025
What Is THD? How It Affects Power Quality & Equipment
What Is THD? How It Affects Power Quality & Equipment
In the field of electrical engineering, the stability and reliability of power systems are of paramount importance. With the advancement of power electronics technology, the widespread use of nonlinear loads has led to an increasingly serious problem of harmonic distortion in power systems.Definition of THDTotal Harmonic Distortion (THD) is defined as the ratio of the root mean square (RMS) value of all harmonic components to the RMS value of the fundamental component in a periodic signal. It is
Encyclopedia
11/01/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.