• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Transformer Insulation Integrity and Protection Testing: Ensuring Reliability and Performance

Rockwell
Field: Manufacturing
China

Verification of Insulation Integrity

When a new or overhauled transformer is energized under open-circuit (no-load) conditions, switching surges—caused by operations such as opening or closing the no-load transformer circuit—can generate overvoltages. These reach 4.0–4.5 times the phase voltage if the neutral point is isolated or earthed through a Petersen coil, and up to 3.0 times the phase voltage when the neutral is solidly grounded. The full-voltage, no-load impact test deliberately subjects insulation to these switching overvoltages before service, exposing any weak spots in the transformer windings or auxiliary circuits.

Assessment of Differential Protection Performance

Energizing a de-energized, unloaded transformer produces inrush (magnetizing) currents reaching 6–8 times the rated current. Though this inrush decays relatively rapidly—typically to 0.25–0.5 times rated current within 0.5–1 second—total decay may take several seconds in small-to-medium units and 10–20 seconds in large transformers. Early-stage inrush can falsely trigger differential protection, preventing closure. Repeated no-load closing operations allow protection engineers to observe actual inrush waveforms, verify relay wiring, characteristic curves, and settings, and confirm proper differential protection operation under real inrush conditions.

Evaluation of Mechanical Strength

Substantial electromagnetic forces generated during inrush transients subject the transformer's core, windings, and structural components to mechanical stress. Repeated no-load closing tests verify that all internal and support structures can withstand these forces without deformation or damage.

Test Procedure Requirements

  • New Units: Five consecutive full-voltage no-load closing operations.

  • Overhauled Units: Three consecutive operations.

  • Test Interval: At least 5 minutes between operations.

  • On-Site Monitoring: Qualified technicians should observe the transformer throughout testing, checking for abnormalities (unusual sounds, vibrations, or thermal signs) and halting immediately if defects are detected.

These multiple impact tests ensure the transformer's insulation reliability, protection coordination, and mechanical robustness before continuous service.

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
Why Must a Transformer Core Be Grounded at Only One Point? Isn't Multi-Point Grounding More Reliable?
Why Does the Transformer Core Need to Be Grounded?During operation, the transformer core, along with the metal structures, parts, and components that fix the core and windings, are all situated in a strong electric field. Under the influence of this electric field, they acquire a relatively high potential with respect to ground. If the core is not grounded, a potential difference will exist between the core and the grounded clamping structures and tank, which may lead to intermittent discharge.I
01/29/2026
Related Products
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.