What is the reason for conducting five impulse tests before commissioning a transformer?

Rockwell
07/30/2025

Verification of Insulation Integrity

When a new or overhauled transformer is energized under open-circuit (no-load) conditions, switching surges—caused by operations such as opening or closing the no-load transformer circuit—can generate overvoltages. These reach 4.0–4.5 times the phase voltage if the neutral point is isolated or earthed through a Petersen coil, and up to 3.0 times the phase voltage when the neutral is solidly grounded. The full-voltage, no-load impact test deliberately subjects insulation to these switching overvoltages before service, exposing any weak spots in the transformer windings or auxiliary circuits.

Assessment of Differential Protection Performance

Energizing a de-energized, unloaded transformer produces inrush (magnetizing) currents reaching 6–8 times the rated current. Though this inrush decays relatively rapidly—typically to 0.25–0.5 times rated current within 0.5–1 second—total decay may take several seconds in small-to-medium units and 10–20 seconds in large transformers. Early-stage inrush can falsely trigger differential protection, preventing closure. Repeated no-load closing operations allow protection engineers to observe actual inrush waveforms, verify relay wiring, characteristic curves, and settings, and confirm proper differential protection operation under real inrush conditions.

Evaluation of Mechanical Strength

Substantial electromagnetic forces generated during inrush transients subject the transformer's core, windings, and structural components to mechanical stress. Repeated no-load closing tests verify that all internal and support structures can withstand these forces without deformation or damage.
Test Procedure Requirements
  • New Units: Five consecutive full-voltage no-load closing operations.
  • Overhauled Units: Three consecutive operations.
  • Test Interval: At least 5 minutes between operations.
  • On-Site Monitoring: Qualified technicians should observe the transformer throughout testing, checking for abnormalities (unusual sounds, vibrations, or thermal signs) and halting immediately if defects are detected.
These multiple impact tests ensure the transformer's insulation reliability, protection coordination, and mechanical robustness before continuous service.
Rockwell

Wenzhou Rockwell Transformer Co., Ltd. It is a high - tech enterprise integrating R & D, production, sales, and service. It focuses on the manufacturing of power transformers and supporting equipment, and is committed to providing efficient, reliable, and energy - saving power transmission and distribution solutions for global customers. We can offer: •Distribution transformers and substations •Outdoor switchgears and breakers(recloser) •Switchgears and it’s components (GIS, RMU, VCB, SF6 CB) Market and Service: We always take customers as the orientation and provide customized services according to their requirements. Our products are exported to the Middle East, Africa, Northern Europe, South America, and many other countries and regions. Drive the future of electricity with technological innovation and become a leading global supplier of intelligent power equipment.

Transformer operation and maintenance
Transformer operation and maintenance
Transformer Operating TemperatureDuring operation, transformers generate copper losses and iron losses, both of which are converted into heat, causing the transformer’s temperature to rise. Most transformers in China use Class A insulation. Due to heat transfer characteristics, significant temperature differences exist between different components during operation: winding temperature is the highest, followed by the core, and then the temperature of the insulating oil (with upper-layer oil being
Encyclopedia
07/31/2025
What Is An Inverter-integrated Transformer?
What Is An Inverter-integrated Transformer?
An inverter-integrated transformer is a power conversion device that combines the functions of an inverter and a transformer into a single unit. Widely utilized in renewable energy systems such as solar photovoltaic (PV) and wind power generation, its primary role is to convert direct current (DC) to alternating current (AC) while adjusting voltage levels (stepping up or down) via the transformer, ensuring compatibility with grid requirements or specific load demands.1. Basic Functions and Opera
Vziman
07/31/2025
What are the technical characteristics of hydrogen-cooled power transformer technology?
What are the technical characteristics of hydrogen-cooled power transformer technology?
Power transformers are pivotal components in electrical grids, tasked with voltage conversion to enable efficient electricity transmission and distribution. As global energy demands surge and grid architectures grow increasingly complex, there is an urgent need for advanced transformer technologies that enhance efficiency, minimize environmental impact, and ensure operational reliability. Among emerging innovations, hydrogen-cooled power transformer technology has emerged as a particularly promi
Edwiin
07/31/2025
What are the basic knowledge points about transformer bushings?
What are the basic knowledge points about transformer bushings?
1. Functions of Transformer BushingsThe core function of transformer bushings is to lead the coil leads out to the external environment. They serve both as insulating components between the leads and the oil tank and as fixing devices for the leads.During the operation of a transformer, bushings continuously carry load currents and, in the event of an external short circuit, withstand short-circuit currents. Therefore, transformer bushings must meet the following requirements:Possess specified e
Rockwell
07/31/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!