• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Why Is Oil Used in Power Transformers? Key Benefits Explained

Rockwell
Rockwell
Field: Manufacturing
China

Most power transformers are oil-immersed, as the use of oil as both a cooling and insulating medium has proven highly effective in the electrical industry. Below are the primary reasons for using oil in power transformers:

Cooling: Oil possesses excellent cooling properties. It absorbs heat generated during transformer operation—particularly from the windings and core due to electrical losses—and transfers it away, effectively dissipating thermal energy and preventing overheating.

Insulation: Oil provides reliable electrical insulation, minimizing the risk of electrical breakdown and arcing between high-voltage and low-voltage windings. With its high dielectric strength, insulating oil can withstand significant electric field stresses without failure.

Dielectric Properties: The superior dielectric characteristics of oil make it an ideal insulating medium. It resists electrical conduction under high voltage, helping to prevent short circuits and ensuring stable, reliable transformer operation.

Chemical Stability: Transformer oil is chemically stable and resistant to degradation over time. This stability is essential for preserving its insulating capabilities and supporting the long-term reliability of the transformer.

Arc Quenching: In the event of an internal fault or arcing, oil acts as an effective arc-quenching medium. It helps extinguish the arc by cooling and deionizing the plasma, thereby limiting damage to internal components.

Ease of Maintenance: Oil-immersed transformers are relatively easy to maintain. The condition of the oil can be routinely tested for dielectric strength and other key properties. If needed, the oil can be filtered, reconditioned, or replaced to restore optimal performance.

Cost-Effectiveness: Compared to alternative cooling and insulation methods—such as air in dry-type transformers or gases like SF₆—transformer oil offers a favorable balance of performance, efficiency, and cost, making it economically advantageous for widespread use.

While oil-immersed transformers are known for their reliability and efficiency, ongoing research continues to explore alternative insulation and cooling technologies, such as dry-type transformers that use solid insulation materials. These alternatives are often preferred in applications where environmental safety, fire risk, or oil leakage are significant concerns.

Give a tip and encourage the author!
Recommended
What causes a transformer to be noisier under no-load conditions?
What causes a transformer to be noisier under no-load conditions?
When a transformer is operating under no-load conditions, it often produces louder noise than under full load. The primary reason is that, with no load on the secondary winding, the primary voltage tends to be slightly higher than nominal. For example, while the rated voltage is typically 10 kV, the actual no-load voltage may reach around 10.5 kV.This elevated voltage increases the magnetic flux density (B) in the core. According to the formula:B = 45 × Et / S(where Et is the designed volts-per-
Noah
11/05/2025
Under what circumstances should an arc suppression coil be taken out of service when it is installed?
Under what circumstances should an arc suppression coil be taken out of service when it is installed?
When installing an arc suppression coil, it is important to identify the conditions under which the coil should be taken out of service. The arc suppression coil should be disconnected under the following circumstances: When a transformer is being de-energized, the neutral-point disconnector must be opened first before performing any switching operations on the transformer. The energizing sequence is the reverse: the neutral-point disconnector should be closed only after the transformer is energ
Echo
11/05/2025
What fire prevention measures are available for power transformer failures?
What fire prevention measures are available for power transformer failures?
Failures in power transformers are commonly caused by severe overload operation, short circuits due to winding insulation degradation, aging of transformer oil, excessive contact resistance at connections or tap changers, failure of high- or low-voltage fuses to operate during external short circuits, core damage, internal arcing in oil, and lightning strikes.Since transformers are filled with insulating oil, fires can have severe consequences—ranging from oil spraying and ignition to, in extrem
Noah
11/05/2025
What are the common faults encountered during the operation of power transformer longitudinal differential protection?
What are the common faults encountered during the operation of power transformer longitudinal differential protection?
Transformer Longitudinal Differential Protection: Common Issues and SolutionsTransformer longitudinal differential protection is the most complex among all component differential protections. Misoperations occasionally occur during operation. According to 1997 statistics from the North China Power Grid for transformers rated 220 kV and above, there were 18 incorrect operations in total, of which 5 were due to longitudinal differential protection—accounting for approximately one-third. Causes of
Felix Spark
11/05/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.