• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


How does a transformer work?

Rockwell
Rockwell
Field: Manufacturing
China

Transformer Operation Principle

A transformer is an electrical device that operates on the principle of electromagnetic induction to transfer electrical energy from one circuit to another. It enables the adjustment of voltage levels within an alternating current (AC) system, either stepping up (increasing) or stepping down (decreasing) voltage while maintaining the same frequency.

Working Principle:

Basic Components
A transformer consists of two coils, known as windings—the "primary winding" connected to the AC power source, and the "secondary winding" connected to the load. These windings are wound around a core typically made of magnetic material (such as iron). The core serves to concentrate and guide the magnetic field generated by the current flowing through the primary winding.

Principle of Electromagnetic Induction
When AC current flows through the primary winding, it produces a continuously changing magnetic field. According to Faraday's Law of Electromagnetic Induction, this changing magnetic field induces a voltage (electromotive force, or EMF) in the secondary winding, even though the two windings are not electrically connected.

Voltage Transformation
The voltage induced in the secondary winding depends on the turns ratio—the ratio of the number of turns in the secondary winding to that in the primary winding. If the secondary has more turns than the primary, the voltage is stepped up; if it has fewer turns, the voltage is stepped down.

Current Transformation
Due to the conservation of power, there is an inverse relationship between voltage and current. When voltage is stepped up, current decreases, and when voltage is stepped down, current increases, thereby maintaining power balance.

Load Connection
The load (such as appliances or machinery) is connected to the secondary winding, which supplies the transformed voltage to power the load.

Isolation and Galvanic Separation
Transformers provide electrical isolation and galvanic separation between the primary and secondary circuits. This means there is no direct electrical connection between the windings, enhancing safety and preventing unwanted current flow between circuits.

In summary, transformers operate on electromagnetic induction, where a changing magnetic field from the primary winding induces a voltage in the secondary winding. By varying the number of turns in the windings, transformers can step up or step down voltage while maintaining power balance between the primary and secondary circuits. Transformers are essential components in power distribution and transmission systems, enabling efficient and safe electricity delivery.

Give a tip and encourage the author!
Recommended
 Causes and Preventive Measures of Fire and Explosion in Oil Circuit Breakers
Causes and Preventive Measures of Fire and Explosion in Oil Circuit Breakers
Causes of Fire and Explosion in Oil Circuit Breakers When the oil level in an oil circuit breaker is too low, the oil layer covering the contacts becomes too thin. Under the effect of the electric arc, the oil decomposes and releases flammable gases. These gases accumulate in the space beneath the top cover, mixing with air to form an explosive mixture, which can ignite or explode under high temperature. If the oil level inside the tank is too high, the released gases have limited space to expan
Felix Spark
11/06/2025
What causes a transformer to be noisier under no-load conditions?
What causes a transformer to be noisier under no-load conditions?
When a transformer is operating under no-load conditions, it often produces louder noise than under full load. The primary reason is that, with no load on the secondary winding, the primary voltage tends to be slightly higher than nominal. For example, while the rated voltage is typically 10 kV, the actual no-load voltage may reach around 10.5 kV.This elevated voltage increases the magnetic flux density (B) in the core. According to the formula:B = 45 × Et / S(where Et is the designed volts-per-
Noah
11/05/2025
Under what circumstances should an arc suppression coil be taken out of service when it is installed?
Under what circumstances should an arc suppression coil be taken out of service when it is installed?
When installing an arc suppression coil, it is important to identify the conditions under which the coil should be taken out of service. The arc suppression coil should be disconnected under the following circumstances: When a transformer is being de-energized, the neutral-point disconnector must be opened first before performing any switching operations on the transformer. The energizing sequence is the reverse: the neutral-point disconnector should be closed only after the transformer is energ
Echo
11/05/2025
What fire prevention measures are available for power transformer failures?
What fire prevention measures are available for power transformer failures?
Failures in power transformers are commonly caused by severe overload operation, short circuits due to winding insulation degradation, aging of transformer oil, excessive contact resistance at connections or tap changers, failure of high- or low-voltage fuses to operate during external short circuits, core damage, internal arcing in oil, and lightning strikes.Since transformers are filled with insulating oil, fires can have severe consequences—ranging from oil spraying and ignition to, in extrem
Noah
11/05/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.