• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Hot Wire Instrument

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

Definition

A hot - wire instrument is defined as a type of measuring device that utilizes the heating effect of an electric current to determine the magnitude of that current. Its operation is based on the principle that when an electric current passes through a wire, the heat generated causes the wire to expand, increasing its length. This versatile instrument is capable of measuring both alternating current (AC) and direct current (DC), making it a valuable tool in various electrical applications.

Construction of the Hot - Wire Instrument

The construction of a hot - wire instrument is illustrated in the figure below. At the core of its operation, the current whose magnitude needs to be measured is passed through a platinum - iridium wire. This wire is a critical component due to its high melting point and good electrical conductivity, which ensure reliable performance under the heating effect of the current. The hot - wire instrument typically employs a two - wire configuration

image.png

Construction of the Hot - Wire Instrument

One wire is firmly attached between two terminals, while the second wire is connected between the first wire and a third terminal, as depicted in the figure above. A thread is routed over a pulley and then attached to a spring. This spring exerts a force that keeps the platinum - iridium wire under tension, maintaining its initial state.

Working Principle of Hot - Wire Instruments

When an electric current flows through the platinum - iridium wire, the wire heats up due to the Joule heating effect and subsequently expands. As the wire heats, its sag increases. However, the wire returns to its original position with the assistance of the spring. The alternating expansion and contraction of the wire cause the pulley to rotate, which in turn deflects the pointer on the instrument's display. Notably, the extent of the wire's expansion is directly proportional to the square of the root - mean - square (RMS) value of the current passing through it, enabling accurate current measurement.

Advantages of the Hot - Wire Instrument

The hot - wire instrument offers several notable benefits:

  • Versatile Measurement Capability: It can be used for measuring both alternating current (AC) and direct current (DC), making it suitable for a wide range of electrical applications.

  • Calibration Consistency: As a transfer - type instrument, its calibration remains the same for both AC and DC measurements. This simplifies the calibration process and ensures reliable and consistent results across different current types.

  • Magnetic Field Immunity: The hot - wire instrument is immune to stray magnetic fields. This characteristic allows it to provide accurate measurements even in environments with significant electromagnetic interference.

  • Simple and Cost - Effective Design: Its construction is relatively straightforward and inexpensive, making it an accessible option for various users, from hobbyists to professionals on a budget.

Disadvantages of the Hot - Wire Instrument

Despite its advantages, the hot - wire instrument has several limitations:

  • Slow Response Time: One of its primary drawbacks is its slow response. The time required for the wire to heat up, expand, and for the pointer to deflect means that it may not be suitable for applications requiring rapid measurement of changing current values.

  • Instability Due to Wire Stretch: Over time, the repeated heating and cooling cycles can cause the wire to stretch, leading to instability in the instrument's readings. This stretching can gradually affect the accuracy of the measurements and require frequent calibration or replacement of the wire.

  • High Power Consumption: The hot - wire instrument consumes a relatively large amount of power compared to some other types of measuring instruments. This higher power usage can be a concern, especially in applications where power efficiency is crucial.

  • Susceptibility to Overload and Mechanical Shock: It lacks the ability to withstand overload conditions and mechanical shocks well. Even a brief exposure to excessive current or a sudden jolt can damage the delicate wire and other components, rendering the instrument inoperable or inaccurate.

Due to these aforementioned disadvantages, hot - wire instruments have largely been supplanted by more advanced thermoelectric instruments in many modern applications.

Give a tip and encourage the author!
Recommended
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
Ring main units (RMUs) are used in secondary power distribution, directly connecting to end-users such as residential communities, construction sites, commercial buildings, highways, etc.In a residential substation, the RMU introduces 12 kV medium voltage, which is then stepped down to 380 V low voltage through transformers. The low-voltage switchgear distributes electrical energy to various user units. For a 1250 kVA distribution transformer in a residential community, the medium-voltage ring m
James
11/03/2025
Why Monitoring Accuracy Matters in Power Quality Systems
Why Monitoring Accuracy Matters in Power Quality Systems
The Critical Role of Monitoring Accuracy in Power Quality Online DevicesThe measurement accuracy of online power quality monitoring devices is the core of the power system’s “perception capability,” directly determining the safety, economy, stability, and reliability of power supply to users. Inadequate accuracy leads to misjudgment, incorrect control, and flawed decision-making—potentially causing equipment damage, economic losses, or even grid failures. Conversely, high accuracy enables precis
Oliver Watts
10/30/2025
How Does Power Dispatching Ensure Grid Stability and Efficiency?
How Does Power Dispatching Ensure Grid Stability and Efficiency?
Electric Power Dispatching in Modern Power SystemsThe power system is a critical infrastructure of modern society, providing essential electrical energy for industrial, commercial, and residential use. As the core of power system operation and management, electric power dispatching aims to meet electricity demand while ensuring grid stability and economic efficiency.1. Basic Principles of Electric Power DispatchingThe fundamental principle of power dispatching is to balance supply and demand by
Echo
10/30/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.