• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What is Cathode Ray Oscilloscope (CRO)?

Edwiin
Field: Power switch
China

What is Cathode Ray Oscilloscope (CRO)?

Definition

A cathode ray oscilloscope (CRO) is an electrical instrument for measuring, analyzing and visualizing waveforms and other electronic/electrical phenomena. As a high - speed X - Y plotter, it shows an input signal against another signal or time. Capable of analyzing waveforms, transient phenomena and time - varying quantities across a wide frequency range (from very low to radio frequencies), it mainly operates on voltage. Other physical quantities (current, strain, etc.) can be converted to voltage via transducers for display.

Key Operation

A luminous spot (from an electron beam hitting a fluorescent screen) moves on the display per input voltages. A standard CRO uses an internal horizontal ramp voltage ("time base") for left - to - right horizontal movement, with vertical movement controlled by the voltage under test, enabling stationary viewing of fast - varying signals.

Construction

Main components:

  • Cathode Ray Tube (CRT):A vacuum tube converting electrical to visual signals, with an electron gun and electrostatic deflection plates (vertical/horizontal). The gun produces a focused, high - speed electron beam; plates move the beam independently for screen positioning.

  • Electronic Gun Assembly:Emits and shapes the electron beam, including heater, cathode (barium/strontium - coated for electron emission), control grid (regulates beam intensity via negative potential), and anodes (for acceleration at ~1500V). Focusing uses electrostatic methods (standard in CROs).

  • Deflecting Plates:Two pairs: “Y plates” (vertical) and “X plates” (horizontal) control beam movement.

  • Fluorescent Screen:CRT faceplate (flat for small, curved for large screens) coated with phosphor. Electrons striking it cause fluorescence (light emission).

  • Glass Envelope:Highly evacuated, cone - shaped. Inner surface has aquadag (conductive coating connected to the accelerating anode) to aid electron focusing.

Working Principle

Electrons from the cathode pass through the control grid (negative potential adjusts intensity). Accelerated by anodes, focused, and deflected by plates per input voltages, they hit the screen, creating a visible spot to trace waveforms.

After passing through the control grid, the electron beam travels through the focusing and accelerating anodes. The accelerating anodes, at a high positive potential, converge the beam to a point on the screen.

Emerging from the accelerating anode, the beam then comes under the influence of the deflecting plates. With zero potential on the deflecting plates, the beam forms a spot at the center of the screen. Applying a voltage to the vertical deflecting plates deflects the electron beam upward; applying a voltage to the horizontal deflecting plates deflects the light spot horizontally.

Give a tip and encourage the author!
Recommended
Why Regular Transformer Maintenance Matters: 5 Serious Consequences of Neglecting It
I. Allowable TemperatureWhen a transformer is in operation, its windings and iron core generate copper loss and iron loss. These losses are converted into heat energy, causing the temperature of the transformer's iron core and windings to rise. If the temperature exceeds the allowable value for a long time, the insulation will gradually lose its mechanical elasticity and age.The temperature of each part of the transformer during operation is different: the winding temperature is the highest, fol
Rockwell
09/12/2025
How to Implement Condition-Based Maintenance for Power Transformers? A Complete 4-Step Process Analysis
1. Definition of Condition-Based MaintenanceCondition-based maintenance refers to a maintenance method where decisions on whether and how to perform maintenance are determined based on the real-time operating status and health condition of equipment. It has no fixed maintenance methods or schedules. The prerequisite for condition-based maintenance is the establishment of equipment parameters and the comprehensive analysis of various operational information of the equipment, so as to make reasona
Noah
09/12/2025
Can't choose a dry-type transformer? Get expert advice – free.
Traction Rectifier TransformersRated capacity: 800 to 4400 kVA; Voltage class: 10 kV and 35 kV; Rectifier pulse number: 12-pulse and 24-pulse. Compared with 12-pulse rectifier circuits, 24-pulse rectifier circuits can reduce the harmonic pollution of the power grid by 50%, and no filtering equipment is needed at this location. It is suitable for power supply systems of urban subways and rail transit.Excitation Rectifier TransformersRated capacity: 315 to 3000 × 3 kVA; Voltage class: 10 kV, 13.8
Vziman
09/12/2025
High harmonics? Your transformer may be overheating and aging fast.
This report is based on the analysis of one-day power quality monitoring data of your company's distribution system. The data shows that there is significant three-phase current harmonic distortion in the system (with a high total harmonic distortion of current, THDi). In accordance with international standards (IEC/IEEE), harmonic currents at this level have posed substantial risks to the safe, reliable, and economical operation of the power supply transformer, mainly manifested in additional h
Leon
09/12/2025
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.