Back-to-Back Test (Sumpner’s Test) on Transformer

Encyclopedia
04/07/2025

Definition

Conducting a full - load test on a small transformer is quite convenient. However, when it comes to large transformers, this task becomes extremely challenging. The maximum temperature rise in a large transformer is typically determined through a full - load test. This particular test is also known as the back - to - back test, regenerative test, or Sumpner’s test.

Finding a suitable load that can absorb the full - load power of a large transformer is not an easy feat. As a result, a significant amount of energy would be wasted if a traditional full - load test were to be carried out. The back - to - back test is designed to determine the maximum temperature rise in a transformer. Thus, the load is selected in accordance with the transformer's capacity.

Back - to - Back Test Circuit

For the back - to - back test, two identical transformers are utilized. Let's assume that Tr1 and Tr2 are the primary windings of the transformers, which are connected in parallel with each other. A nominal rated voltage and frequency are supplied to their primary windings. Voltmeters and ammeters are connected on the primary side to measure the input voltage and current.

The secondary windings of the transformers are connected in series with each other, but with opposite polarities. A voltmeter V2 is connected across the terminals of the secondary windings to measure the voltage.

To determine the series - opposition connection of the secondary windings, any two terminals are connected, and a voltmeter is connected across the remaining terminals. If the connection is in series - opposition, the voltmeter will show a zero reading. The open terminals are then used to measure the parameters of the transformer.

插图.jpg

Determination of Temperature Rise

In the above figure, terminals B and C are connected to each other, and the voltage is measured across terminals A and D.

The temperature rise of the transformers is ascertained by measuring the temperature of their oil at specific time intervals. Since the transformers operate in a back - to - back configuration for an extended period, the oil temperature gradually increases. By monitoring the oil temperature, the ability of the transformers to withstand high temperatures can be determined.

Determination of Iron Loss

The wattmeter W1 measures the power loss, which is equivalent to the iron loss of the transformer. To determine the iron loss, the primary circuit of the transformer is maintained in a closed state. With the primary circuit closed, no current passes through the secondary windings of the transformer, causing the secondary winding to behave as an open circuit. The wattmeter is connected to the secondary terminals to measure the iron loss.

Determination of Copper Loss

The copper loss of the transformer is determined when the full - load current flows through both its primary and secondary windings. An additional regulating transformer is employed to excite the secondary windings. The full - load current flows from the secondary to the primary winding. The wattmeter W2 measures the full - load copper loss of the two transformers.

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
For users, when purchasing a 35kV new energy transformer, choosing between dry-type, mineral oil-filled, or vegetable oil-filled types involves multiple considerations. These include user habits, maintenance-free performance, safety and fire resistance, volume and weight, among others. However, cost differences are undoubtedly one of the most crucial factors.To illustrate the issue intuitively, this paper selects a three-level energy efficiency dual-winding new energy transformer with a rated ca
Ron
07/26/2025
What is the connection group of a transformer?
What is the connection group of a transformer?
Transformer Connection GroupThe connection group of a transformer refers to the phase difference between the primary and secondary voltages or currents. It is determined by the winding directions of the primary and secondary coils, the labeling of their start and end terminals, and the connection mode. Expressed in a clock-like format, there are 12 groups in total, numbered from 0 to 11.The DC method is commonly used to measure the transformer's connection group, mainly to verify whether the con
Vziman
07/26/2025
What is the sequence for powering down the transformer?
What is the sequence for powering down the transformer?
The sequence for shutting down a main transformer is as follows: when de-energizing, the load side should be shut down first, followed by the power supply side. For energizing operations, the reverse order applies: the power supply side is energized first, then the load side. This is because: Energizing from the power supply side to the load side makes it easier to identify the fault range and take prompt judgment and handling measures in case of a fault, preventing the fault from spreading or e
Rockwell
07/26/2025
What are the methods for switching operations of station transformers?
What are the methods for switching operations of station transformers?
Let's take an auxiliary power system with two station transformers as an example. When one station transformer needs to be out of service, there are two operation methods: non-interruptive power supply and instantaneous power interruption. Generally, the method of instantaneous power interruption on the low-voltage side is preferred.The operation method for instantaneous power interruption on the low-voltage side is as follows:Open the 380V power incoming circuit breaker of the corresponding sec
Vziman
07/26/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!