• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


The reason why fuses take longer to blow when the input power is higher than normal

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

When connected to a higher than normal input power supply (voltage), the fuse takes longer to blow, mainly for the following reasons:


The effect of current and voltage relationship


Ohm's law in action


According to Ohm's law (where is the current, is the voltage, is the resistance), in the case of constant circuit resistance, the voltage increase usually leads to an increase in the current. However, for some circuits containing inductors, capacitors and other components, the voltage increase does not necessarily lead to an immediate proportional increase in current.


For example, in a circuit containing inductors, when the voltage is suddenly increased, the inductor will create a reverse electromotive force to block the rapid change in current, making the current rise relatively slowly. This means that for a short period of time, although the voltage is increased, the current may not reach the blown current value of the fuse.


Influence of load characteristics


Different loads respond differently to voltage changes. Some loads have relatively stable current requirements, even if the input voltage increases, the increase in current is more limited. For example, the voltage regulator circuit in some electronic devices will maintain the stability of the output current within a certain range, even if the input voltage rises, it will not increase the current significantly.


For purely resistive loads, such as heaters, an increase in voltage will increase the current proportionally. However, in practice, many circuits are not pure resistive loads, so the effect of voltage rise on current is more complicated.


Factors in the fuse fuse mechanism


Heat accumulation process


A fuse is blown because the heat generated by the passing current exceeds the capacity of the fuse. When the input voltage is increased, although the current may increase, the heat accumulation time required for the fuse to blow will be longer.


Fuses are usually made of metal material with a low melting point, and when an electric current passes through it, heat is generated to raise the temperature of the fuse. A fuse will only blow if the temperature rises enough to melt it. The accumulation of heat is a time process, even if the current increases, it takes a certain amount of time to make the fuse reach the fuse temperature.


For example, a fuse rated for current, at normal operating voltage, may blow within a few seconds when the passing current is exceeded. But if the input voltage rises, assuming the current increases to the point where it may take tens of seconds or even longer to fuse due to the relatively slow heat accumulation rate.


Design characteristics of fuses


The design of fuses usually takes into account a certain overvoltage and overcurrent tolerance. In the case of a voltage rise within a certain range, the fuse will not be blown immediately, but can withstand overvoltage and overcurrent for a period of time to avoid misblowing due to instantaneous voltage fluctuations or brief overcurrent.


For example, some high-quality fuses may have a wide operating voltage range and better resistance to overvoltage, and can still maintain normal operation for a period of time when the input voltage is slightly higher than the normal voltage, without immediately blowing. This is to improve the reliability and stability of the circuit, to avoid frequent replacement of fuses.


Give a tip and encourage the author!
Recommended
What are the causes of failures in low-voltage switchgear circuit breakers themselves?
What are the causes of failures in low-voltage switchgear circuit breakers themselves?
Based on years of field statistics on switchgear accidents, combined with analysis focusing on the circuit breaker itself, the main causes have been identified as: failure of operation mechanism; insulation faults; poor breaking and closing performance; and poor conductivity.1.Failure of Operation MechanismFailure of operation mechanism manifests as delayed operation or unintended operation. Since the most basic and important function of a high-voltage circuit breaker is to operate correctly and
Felix Spark
11/04/2025
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
Compact Air-Insulated RMUs for Retrofit & New Substations
Compact Air-Insulated RMUs for Retrofit & New Substations
Air-insulated ring main units (RMUs) are defined in contrast to compact gas-insulated RMUs. Early air-insulated RMUs used vacuum or puffer-type load switches from VEI, as well as gas-generating load switches. Later, with the widespread adoption of the SM6 series, it became the mainstream solution for air-insulated RMUs. Similar to other air-insulated RMUs, the key difference lies in replacing the load switch with an SF6-encapsulated type—where the three-position switch for load and grounding is
Echo
11/03/2025
Climate-Neutral 24kV Switchgear for Sustainable Grids | Nu1
Climate-Neutral 24kV Switchgear for Sustainable Grids | Nu1
Expected service life of 30–40 years, front access, compact design equivalent to SF6-GIS, no SF6 gas handling – climate-friendly, 100% dry air insulation. The Nu1 switchgear is metal-enclosed, gas-insulated, featuring a withdrawable circuit breaker design, and has been type-tested according to relevant standards, approved by the internationally recognized STL laboratory.Compliance Standards Switchgear: IEC 62271-1 High-voltage switchgear and controlgear – Part 1: Common specifications for altern
Edwiin
11/03/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.