• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What is the purpose of using high voltage and low frequency in electricity?

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

Purpose of Using High Voltage and Low Frequency in Power Systems

The main purpose of using high voltage and low frequency in power systems is to improve transmission efficiency and reduce costs. Here are the specific reasons:

1. High Voltage

  • Reduce Current: According to Ohm's law V=IR, increasing the voltage can reduce the current. Under the same power transmission conditions, higher voltage means lower current.

  • Lower Line Losses: Line losses are proportional to the square of the current, i.e., Ploss=I2 R. Therefore, reducing the current significantly lowers line losses.

  • Smaller Conductor Size: With reduced current, smaller conductor sizes can be used, saving materials and costs.

  • Increased Transmission Distance: Higher voltage supports longer transmission distances because line losses and voltage drops are reduced.

2. Low Frequency

  • Reduce Eddy Current Losses: Low frequency reduces eddy current losses. Eddy current losses are proportional to the square of the frequency, i.e., Peddy∝f2 . Therefore, low frequency helps reduce eddy current losses in transformers and motors.

  • Reduce Hysteresis Losses: Low frequency also reduces hysteresis losses, which are proportional to the frequency.

  • Improve System Stability: Low frequency helps improve the stability of power systems, especially in long-distance transmission and large-capacity systems.

Does Different Voltage and Frequency Levels Change the Speed of Electricity?

The speed of electricity transmission in conductors is determined by the physical properties of the conductor, not directly by voltage or frequency. Specifically:

  • Speed of Electricity Transmission: Electricity travels in conductors at a speed close to the speed of light, approximately 299,792 km/s. This speed is usually about 60% to 70% of the speed of light in the medium.

  • Effect of Voltage and Frequency: Voltage and frequency do not directly affect the speed of electricity transmission. They primarily influence the size of the current, line losses, the size of equipment, and efficiency.

Summary

  • High Voltage: Reduces current, lowers line losses, reduces conductor size, increases transmission distance.

  • Low Frequency: Reduces eddy current losses, reduces hysteresis losses, improves system stability.

  • Speed of Electricity Transmission: Not directly affected by voltage and frequency; mainly determined by the physical properties of the conductor.

By using high voltage and low frequency, power systems can transmit electrical energy more efficiently and economically, while reducing losses and improving system stability.

Give a tip and encourage the author!
Recommended
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
Ring main units (RMUs) are used in secondary power distribution, directly connecting to end-users such as residential communities, construction sites, commercial buildings, highways, etc.In a residential substation, the RMU introduces 12 kV medium voltage, which is then stepped down to 380 V low voltage through transformers. The low-voltage switchgear distributes electrical energy to various user units. For a 1250 kVA distribution transformer in a residential community, the medium-voltage ring m
James
11/03/2025
Why Monitoring Accuracy Matters in Power Quality Systems
Why Monitoring Accuracy Matters in Power Quality Systems
The Critical Role of Monitoring Accuracy in Power Quality Online DevicesThe measurement accuracy of online power quality monitoring devices is the core of the power system’s “perception capability,” directly determining the safety, economy, stability, and reliability of power supply to users. Inadequate accuracy leads to misjudgment, incorrect control, and flawed decision-making—potentially causing equipment damage, economic losses, or even grid failures. Conversely, high accuracy enables precis
Oliver Watts
10/30/2025
How Does Power Dispatching Ensure Grid Stability and Efficiency?
How Does Power Dispatching Ensure Grid Stability and Efficiency?
Electric Power Dispatching in Modern Power SystemsThe power system is a critical infrastructure of modern society, providing essential electrical energy for industrial, commercial, and residential use. As the core of power system operation and management, electric power dispatching aims to meet electricity demand while ensuring grid stability and economic efficiency.1. Basic Principles of Electric Power DispatchingThe fundamental principle of power dispatching is to balance supply and demand by
Echo
10/30/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.