• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Arc Suppression Coil or Petersen Coil

Electrical4u
Electrical4u
Field: Basic Electrical
0
China

What Is Arc Suppression Coil Or Petersen Coil

There is always a significant charging current flowing from conductor to earth in underground high voltage and medium voltage power network. This is because of dielectric insulation between earth and conductor in the underground cables. During an earth fault in any phase, in a 3 phase such system, the charging current of the system ideally becomes three times more than rated charging current per phase. This larger charging current restrikes and passes to ground through faulty point and causing arcing there. To minimize the large capacitive charging current during earth fault, one inductive coil is connected from star point to earth. The current created in this coil during fault is opposite of cable charging current at same instant, thus neutralizes the charging current of the system during. This coil of suitable inductance is known as Arc Suppression Coil or Petersen Coil.

The voltages of a three phase balanced system is shown in figure – 1.
three phase balanced system
In underground high voltage and medium voltage cable network, there is always a capacitance between conductor and earth in each phase. Because of that there is always a capacitive current from phase to earth. In each phase the capacitive current leads the corresponding phase voltage by 900 as shown in figure – 2.
three phase charging current of underground system

Now suppose there is an earth fault at yellow phase of the system. Ideally, the voltage of yellow phase that is yellow phase to ground voltage becomes zero. Thus, null point of the system is shifted at the tip of the yellow phase vector, as shown in the figure-3, below. As a result, the voltage in healthy phases (red and blue) becomes &sqrt;3 times of the original.
Naturally, the corresponding capacitive current in each healthy phase (red and blue) becomes &sqrt;3 of the original as shown in figure-4, below.

The vector sum that is resultant of these two capacitive current now will be 3I, where I is taken as rated capacitive current per phase in the balanced system. That means, at healthy balanced condition of the system, IR = IY =
IB = I.

This is illustrated in the figure- 5 below,
This resultant current then flows through the faulty path to the earth as shown below.
single phase to earth faultNow, if we connect one inductive coil of suitable inductance value (generally iron core inductor is used) between star point or neutral point of the system and ground, the scenario will be entirely changed. At faulty condition, the current through the inductor just equal and opposite in magnitude and phase of that of capacitive current through the faulty path. The inductive current also follow the faulty path of the system. The capacitive and inductive current cancels each other at the faulty path, hence there will not be any resultant current through the faulty path created due to capacitive action of the underground cable. The ideal situation is illustrated in the figure below.
petersen coilThis concept was first implemented by W. Petersen in 1917, that why the inductor coil is used for the purpose, called Petersen Coil.
The capacitive component of the fault current is high in the underground cabling system. When earth fault occurs, the magnitude of this capacitive current through the faulty path becomes 3 times more than rated phase to earth capacitive current of healthy phase. This causes significant shifting of zero crossing of
current away from zero crossing of voltage in the system. Due to presence of this high capacitive current in the earth fault path there will be a series of re-striking at fault location. This may lead unwanted over voltage in the system.
The inductance of the Petersen Coil is selected or adjusted at such value which causes the inductive current which can exactly neutralize the capacitive current.
Let us calculate the inductance of Petersen Coil for a 3 phase underground system.

For that let us consider capacitance between conductor and earth in each phase of a system, is C farad. Then the capacitive leakage current or charging current in each phase will be
So, the capacitive current through the faulty path during single phase to earth fault is
After fault, the star point will have phase voltage as the null point is shifted to fault point. So the voltage appears across the inductor is Vph. Hence, the inductive current through the coil is
Now, for cancellation capacitive current of value 3I, IL must have same magnitude but 180o electrically apart. Therefore,
When, design or configuration (in length and/or cross section and/or thickness and quality in insulation) of the system changes the inductance of the coil is to be adjusted accordingly. That is why often Petersen coil is provided with tap changing arrangement.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
Busbar-Side Grounding for 24kV Eco-Friendly RMUs: Why & How
Busbar-Side Grounding for 24kV Eco-Friendly RMUs: Why & How
Solid insulation assistance combined with dry air insulation is a development direction for 24 kV ring main units. By balancing insulation performance and compactness, the use of solid auxiliary insulation allows passing insulation tests without significantly increasing phase-to-phase or phase-to-ground dimensions. Encapsulation of the pole can address the insulation of the vacuum interrupter and its connected conductors.For the 24 kV outgoing busbar, with the phase spacing maintained at 110 mm,
Dyson
11/03/2025
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
Ring main units (RMUs) are used in secondary power distribution, directly connecting to end-users such as residential communities, construction sites, commercial buildings, highways, etc.In a residential substation, the RMU introduces 12 kV medium voltage, which is then stepped down to 380 V low voltage through transformers. The low-voltage switchgear distributes electrical energy to various user units. For a 1250 kVA distribution transformer in a residential community, the medium-voltage ring m
James
11/03/2025
What Is THD? How It Affects Power Quality & Equipment
What Is THD? How It Affects Power Quality & Equipment
In the field of electrical engineering, the stability and reliability of power systems are of paramount importance. With the advancement of power electronics technology, the widespread use of nonlinear loads has led to an increasingly serious problem of harmonic distortion in power systems.Definition of THDTotal Harmonic Distortion (THD) is defined as the ratio of the root mean square (RMS) value of all harmonic components to the RMS value of the fundamental component in a periodic signal. It is
Encyclopedia
11/01/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.