• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Sag and Tension

Edwiin
Edwiin
Field: Power switch
China

For safety purpose, the ground clearance of the conductors at maximum temperature and minimum loading condition should be maintained. Analysis of the sag and tension is important in the transmission line for the continuity and quality of electrical services. If the tension of the conductor is increased beyond the limit, it may get broken, and the power transmission of the system get erupt.

The dip of the conductor between the two level supports is called sag. In other words, the vertical distance between the highest point of the electrical pole or tower (where the conductor is connected) and the lowest point of the conductor between the two adjacent level supports is known as sag shown in the figure below. The horizontal distance between two electrical supports is called the span.

If the weight of a conductor is evenly distributed along the line, a freely - suspended conductor is assumed to take the shape of a parabola. The magnitude of the sag increases as the span length grows. For small spans (up to 300 meters), the parabolic method is employed for calculating sag and tension, while for large spans (such as river crossings), the catenary method is used.
Factors Affecting the Sag

  • Conductor Weight: The sag of a conductor is directly proportional to its weight. Ice loading can increase the weight of the conductors, thereby increasing the sag.

  • Span: Sag is directly proportional to the square of the span length. Longer spans result in greater sag.

  • Tension: Sag is inversely proportional to the tension in the conductor. Higher tension, however, increases the stress on insulators and supporting structures.

  • Wind: Wind causes an increase in sag in an inclined direction.

  • Temperature: Sag decreases at low temperatures and increases at higher temperatures.

Give a tip and encourage the author!
Recommended
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
Ring main units (RMUs) are used in secondary power distribution, directly connecting to end-users such as residential communities, construction sites, commercial buildings, highways, etc.In a residential substation, the RMU introduces 12 kV medium voltage, which is then stepped down to 380 V low voltage through transformers. The low-voltage switchgear distributes electrical energy to various user units. For a 1250 kVA distribution transformer in a residential community, the medium-voltage ring m
James
11/03/2025
Why Monitoring Accuracy Matters in Power Quality Systems
Why Monitoring Accuracy Matters in Power Quality Systems
The Critical Role of Monitoring Accuracy in Power Quality Online DevicesThe measurement accuracy of online power quality monitoring devices is the core of the power system’s “perception capability,” directly determining the safety, economy, stability, and reliability of power supply to users. Inadequate accuracy leads to misjudgment, incorrect control, and flawed decision-making—potentially causing equipment damage, economic losses, or even grid failures. Conversely, high accuracy enables precis
Oliver Watts
10/30/2025
How Does Power Dispatching Ensure Grid Stability and Efficiency?
How Does Power Dispatching Ensure Grid Stability and Efficiency?
Electric Power Dispatching in Modern Power SystemsThe power system is a critical infrastructure of modern society, providing essential electrical energy for industrial, commercial, and residential use. As the core of power system operation and management, electric power dispatching aims to meet electricity demand while ensuring grid stability and economic efficiency.1. Basic Principles of Electric Power DispatchingThe fundamental principle of power dispatching is to balance supply and demand by
Echo
10/30/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.