• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Surge Impedance Loading

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

SIL Definition


Surge Impedance Loading (SIL) is defined as the power a transmission line delivers to a load that matches the line’s surge impedance.

 


Surge Impedance


Surge Impedance is the balance point where capacitive and inductive reactances of a transmission line cancel each other out.

 


Long transmission lines (> 250 km) inherently possess distributed inductance and capacitance. When activated, the capacitance feeds reactive power into the line, and the inductance absorbs it.

 


Now if we take the balance of the two reactive powers we arrive at the following equation

 


Capacitive VAR = Inductive VAR

 


Where,

V = Phase voltage

I = Line Current

Xc = Capacitive reactance per phase

XL = Inductive reactance per phase

Upon simplifying

 


eec5aa71e277fb8a6a441d95579c8b7c.jpeg

 


Where,

f = Frequency of the system

L = Inductance per unit length of the line

l = Length of the line

Hence we get,

 


ee12cd10bba3bf52fcd36e98dfb23186.jpeg

 


This quantity having the dimensions of resistance is the Surge Impedance. It can be considered as a purely resistive load which when connected at the receiving end of the line, the reactive power generated by capacitive reactance will be completely absorbed by inductive reactance of the line.


It is nothing but the Characteristic Impedance (Zc) of a lossless line.

 


Transmission Line Properties


  • Key properties such as distributed inductance and capacitance are fundamental to understanding transmission line behavior.



  • Key properties such as distributed inductance and capacitance are fundamental to understanding transmission line behavior.



  • Calculations involving the characteristic impedance and load impedance help in understanding how SIL influences power transmission efficiency.

 


Practical Application


SIL is crucial for designing transmission lines to ensure voltage stability and efficient power delivery.

 



Give a tip and encourage the author!
Recommended
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
Ring main units (RMUs) are used in secondary power distribution, directly connecting to end-users such as residential communities, construction sites, commercial buildings, highways, etc.In a residential substation, the RMU introduces 12 kV medium voltage, which is then stepped down to 380 V low voltage through transformers. The low-voltage switchgear distributes electrical energy to various user units. For a 1250 kVA distribution transformer in a residential community, the medium-voltage ring m
James
11/03/2025
Why Monitoring Accuracy Matters in Power Quality Systems
Why Monitoring Accuracy Matters in Power Quality Systems
The Critical Role of Monitoring Accuracy in Power Quality Online DevicesThe measurement accuracy of online power quality monitoring devices is the core of the power system’s “perception capability,” directly determining the safety, economy, stability, and reliability of power supply to users. Inadequate accuracy leads to misjudgment, incorrect control, and flawed decision-making—potentially causing equipment damage, economic losses, or even grid failures. Conversely, high accuracy enables precis
Oliver Watts
10/30/2025
How Does Power Dispatching Ensure Grid Stability and Efficiency?
How Does Power Dispatching Ensure Grid Stability and Efficiency?
Electric Power Dispatching in Modern Power SystemsThe power system is a critical infrastructure of modern society, providing essential electrical energy for industrial, commercial, and residential use. As the core of power system operation and management, electric power dispatching aims to meet electricity demand while ensuring grid stability and economic efficiency.1. Basic Principles of Electric Power DispatchingThe fundamental principle of power dispatching is to balance supply and demand by
Echo
10/30/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.