• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


40.5kV-1000kV Silicone rubber high-voltage hollow composite insulator

  • 40.5kV-1000kV Silicone rubber high-voltage hollow composite insulator

Key attributes

Brand Switchgear parts
Model NO. 40.5kV-1000kV Silicone rubber high-voltage hollow composite insulator
Rated voltage 40.5kV
额定弯曲负荷 5kN
Series HCI

Product descriptions from the supplier

Description

Hollow composite insulator is an important component of high-voltage electrical products composed of epoxy glass fiber wrapped tube, silicone rubber umbrella cover (HTV), and aluminum alloy flange accessories. Hollow composite insulators are mainly used in electrical equipment such as circuit breakers, load switches, isolating switches, grounding switches, transformers, bushings, cable terminations, and lightning arresters.
Product advantages
Excellent explosion-proof performance, even in the event of internal overpressure or other external damage, there is no risk of fatal explosion. In earthquake prone areas, the safety performance is extremely high, the weight is light, reducing the risk of damage during transportation and installation, and also reducing the cost and difficulty of transportation and installation. Extremely high insulation level, no need for additional surface coating in humid environments, still has extremely high electrical performance in AC and DC applications. Due to the hydrophobicity and transferability of silicone rubber, the surface does not require cleaning. Excellent UV resistance and aging resistance. The delivery time is significantly shorter than that of porcelain insulators. The materials are recognized as excellent environmental protection and harmless to health and safety.

Performance of epoxy resin glass fiber wrapped pipe

Property Unit Value
Density g/cm³ ≥ 1.9
Bending Strength MPa ≥ 120
Elastic Modulus GPa ≥ 20
Glass Transition Temperature (TG) °C 130℃ - 140℃
Dielectric Loss - 3.1 × 10⁻²
Dielectric Constant - 4.0
Volume Resistivity Ω·m 2.6 × 10¹²
100h Water Diffusion Test - Pass
Dielectric Strength kV/mm 12

Performance of Organic Composite Umbrella Skirt Cover Material

Property Unit Value
Solidity (Shore A) - 65-70
Tear Strength kN/m ≥ 12
Tensile Strength MPa ≥ 4.5
Elongation at Break % ≥ 200
Volume Resistivity Ω·m 7×10¹⁴
Dielectric Constant - 3 ~ 4
Dielectric Strength kV/mm ≥ 20
Tracking and Erosion Resistance - TMA4.5
Flame Retardance - FV-0

The performance requirements and quality control of the end metal flange accessories are made of high-quality aluminum alloy through metal mold pressure casting, T6 state treatment, no pinholes, good air tightness, and higher mechanical strength; The surface has undergone shot blasting treatment, providing better corrosion resistance.

Product Specifications

Type Rated Voltage Ur (kV) Creepage Distance (mm) Dry Arc Distance (mm) 1min Power Frequency Withstand Voltage (kV) Lightning Impulse Withstand Voltage (kV) Inner Diameter ID (mm) Mounting Hole Distance D (mm) Structural Height H±2 (mm) Bending Load (kN) Internal Pressure Test (MPa) n d
                  MM L SM L MS P SI P    
HCI-40.5/5 40.5 1040 355 95 200 130 218 525 5 12.5 0.8 3.2 8 11
HCI-40.5/4.8 40.5 1260 415 95 200 585 4.8 12
HCI-52/4.8 52 1400 475 95 250 645 4.8 12
HCI-52/4 52 1650 535 95 250 705 4 10
HCI-72.5/4 72.5 1820 595 155 325 765 4 10
HCI-72.5/3.2 72.5 2800 835 155 325 1005 3.2 8
HCI-40.5/7.5 40.5 1050 370 95 200 154 220 540 7.5 18.8 16 11
HCI-40.5/7 40.5 1270 430 95 200 600 7 17.5
HCI-52/7 52 1500 490 95 250 660 7 17.5
HCI-52/5.6 52 1700 550 95 250 720 5.6 14
HCI-72.5/5.6 72.5 1900 610 155 325 780 5.6 14
HCI-72.5/4.4 72.5 2300 730 155 325 900 4.4 11
HCI-100/5.6 100 2540 790 165 380 960 5.6 14
HCI-100/4.5 100 3200 970 205 450 1140 4.5 11.3
HCI-126/4.5 126 3200 970 205 450 1140 4.5 11.3
HCI-126/4 126 4000 1210 255 550 1380 4 10
HCI-145/4.5 145 3640 1090 230 450 1260 4 10
HCI-145/3.5 145 4500 1330 305 650 1500 3.5 8.8
HCI-170/3.5 170 4280 1270 305 650 1440 3.5 8.8
HCI-170/3 170 5300 1570 355 750 1740 3 7.5
HCI-126/6 126 4000 970 205 450 190 312 1360 6 15
HCI-100/6.4 100 2600 730 165 380 198 260 900 6.4 16
HCI-100/5 100 3100 850 205 450 1020 5 12.5
HCI-126/5 126 3310 910 205 450 1080 5 12.5
HCI-126/4.5 126 4100 1090 255 550 1260 4.5 6.8
HCI-145/4.8 145 3750 1088 205 450 1258 4.8 12
HCI-145/4.0 145 4640 1328 305 650 1498 4 10
Type Rated Voltage Ur (kV) Creepage Distance (mm) Dry Arc Distance (mm) 1min Power Frequency Withstand Voltage (kV) Lightning Impulse Withstand Voltage (kV) Inner Diameter ID (mm) Mounting Hole Distance D (mm) Structural Height H±2 (mm) Bending Load (kN) Internal Pressure Test (MPa) n d
                  MM L SM L MS P SI P    
HCI-170/4.0 170 4420 1268 305 650 198 260 1438 4 10 0.8 3.2 16 11
HCI-170/3.5 170 5306 1508 355 750   1678 3.5 8.8 10 14
HCI-100/9 100 2600 730 165 380 248 342 930 9 22.5
HCI-100/8 100 3110 850 205 450   1050 8 20
HCI-126/8 126 3300 910 205 450   1010 8 20
HCI-126/7 126 4100 1090 255 550   1290 7 17.5
HCI-145/7.4 145 4500 1210 255 550   1410 7.4 18.5
HCI-145/6.5 145 5000 1330 305 650   1500 6.5 16.3
HCI-170/6.5 170 5300 1390 305 650   1590 6.5 16.3
HCI-170/5.6 170 5700 1510 355 750   1710 5.6 14
HCI-252/4.6 252 7700 1990 435 950   2190 4.6 11.5
HCI-252/3.6 252 8600 2220 460 1050   2400 3.6 9
HCI-252/15 252 7650 1930 435 950 260 445 2190 15 37.5 16 17.5
HCI-252/12.5 252 8700 2190 460 1050   2450 12 30
HCI-300/12 300 9400 2380 505 1050   2640 12 30
HCI-300/10 300 10200 2580 505 1050   2840 10 25
HCI-252/15 252 7650 1930 435 950 280 445 2190 15 37.5
HCI-252/12.5 252 8700 2190 460 1050   2450 12 30
HCI-300/12 300 9400 2380 505 1050   2640 12 30
HCI-300/10 300 10200 2580 505 1050   2840 10 25
HCI-800/20 800 27900 6840 1050 2400 300 348-348 2680x3 20 50 4 28
HCI-252/12 252 8900 2260 460 1050   510 2500 12 30 16 18
HCI-252/6 252 9650 2400 460 1050   348-348 2800 6 15 4 28
HCI-252/5 252 8600 2290 460 1050 345 456-466 2542 5 10 20 13.5
HCI-170/5 170 5100 1497 305 650 358 432 1757 5 12.5 24 13.5
HCI-170/5 170 6400 1822 355 750 2080 5 12.5
HCI-252/12.5 252 7600 2147 435 950 2407 5 12.5
HCI-252/5 252 7900 2210 460 1050 2470 5 12.5
HCI-300/5 300 9400 2602 505 1050 2862 5 12.5
HCI-420/4 420 10800 2992 750 1550 3252 4 10
HCI-420/3 420 14280 3900 750 1550 4160 3 7.5
HCI-550/6 550 18800 4767 810 1800 375 460-586 5020 6 15 16 11.5-16
HCI-550/10 550 15800 4050 810 1800 486 590-730 4330 10 25
HCI-550/10 550 17000 4720 810 1800 486 5000 10 25
HCI-750/8 750 30600 7690 960 2400 486 885-1010 8000 8 20 24 24
HCI-550/12 550 18500 4477 810 1800 720 5037 12 30
HCI-750/20 750 31500 7540 960 2400 720 8100 20 50
HCI-1000/20 1000 45000 11000 1200 2760 720 11560 20 50
HCI-1000/20 1000 45500 10720 1200 2760 1000 1180-1200 11500 20 50 26-32 28
FAQ
Q: What scenarios and key technical parameters apply to 40.5-145kV hollow composite insulators?
A:

It is widely used in 40.5-145kV GIS/HGIS substations, high-voltage switchgear, power transmission lines, and railway electrification systems. Core parameters: Rated voltage 40.5/66/110/145kV, rated mechanical load ≥30kN, creepage distance 25-31mm/kV (customizable for heavy pollution), operating temperature -40℃~+80℃. For example, the 145kV model has a typical insulation distance of 1300mm and 1-minute power frequency withstand voltage of 4900V. It is ideal for high-altitude, coastal salt fog, and industrial heavy pollution areas.

Q: What are the core functions and structures of hollow composite insulators?
A:

 Its core function is to provide electrical insulation and mechanical support for high-voltage equipment (such as GIS, circuit breakers, and bushings) in 40.5-145kV power systems. The structure consists of three key parts: a glass fiber reinforced epoxy resin core tube (bearing mechanical load), a silicone rubber shed (providing creepage distance and environmental protection), and metal end fittings (ensuring firm connection). It features a hollow through design, which is compatible with internal gas insulation or conductor penetration scenarios.

Know your supplier
Online store
On-time delivery rate
Response time
100.0%
≤4h
Company overview
Workplace: 1000m² Total staff: Highest Annual Export(usD): 300000000
Workplace: 1000m²
Total staff:
Highest Annual Export(usD): 300000000
Services
Business Type: Sales
Main Categories: Low Voltage Electrical Apparatus/Instrument meters/Production equipment/Tester/High Voltage Electrical Apparatus/Electrical fittings/Equipment Parts
Whole life care manager
Whole-life care management services for equipment procurement, use, maintenance, and after-sales, ensuring safe operation of electrical equipment, continuous control, and worry-free electricity consumption.
The equipment supplier has passed platform qualification certification and technical evaluation, ensuring compliance, professionalism, and reliability from the source.

Related Products

Related Knowledges

  • Main Transformer Accidents and Light Gas Operation Issues
    1. Accident Record (March 19, 2019)At 16:13 on March 19, 2019, the monitoring background reported a light gas action of No. 3 main transformer. In accordance with the Code for Operation of Power Transformers (DL/T572-2010), operation and maintenance (O&M) personnel inspected the on-site condition of No. 3 main transformer.On-site confirmation: The WBH non-electrical protection panel of No. 3 main transformer reported a Phase B light gas action of the transformer body, and the reset was ineff
    02/05/2026
  • Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
    Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
    01/30/2026
  • Neutral point grounding operation mode for 110kV~220kV power grid transformers
    The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
    01/29/2026
  • Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
    Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
    01/29/2026
  • Why Must a Transformer Core Be Grounded at Only One Point? Isn't Multi-Point Grounding More Reliable?
    Why Does the Transformer Core Need to Be Grounded?During operation, the transformer core, along with the metal structures, parts, and components that fix the core and windings, are all situated in a strong electric field. Under the influence of this electric field, they acquire a relatively high potential with respect to ground. If the core is not grounded, a potential difference will exist between the core and the grounded clamping structures and tank, which may lead to intermittent discharge.I
    01/29/2026
  • Understanding Transformer Neutral Grounding
    I. What is a Neutral Point?In transformers and generators, the neutral point is a specific point in the winding where the absolute voltage between this point and each external terminal is equal. In the diagram below, pointOrepresents the neutral point.II. Why Does the Neutral Point Need Grounding?The electrical connection method between the neutral point and earth in a three-phase AC power system is called theneutral grounding method. This grounding method directly affects:The safety, reliabilit
    01/29/2026
Haven't found the right supplier yet? Let matching verified suppliers find you. Get Quotation Now
Haven't found the right supplier yet? Let matching verified suppliers find you.
Get Quotation Now
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.