• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


6.6kV Three-phase Power Distribution Transformer

  • 6.6kV Three-phase Power Distribution Transformer

Key attributes

Brand Vziman
Model NO. 6.6kV Three-phase Power Distribution Transformer
Rated capacity 1500kVA
Voltage grade 6.6KV
Series Distribution Transformer

Product descriptions from the supplier

Description

Product overview:

  • High reliability of operation verification in more than 50 countries and regions around the world.

  • Mainly used in power generation enterprises, industrial and mining enterprises, water conservancy facilities, petrochemical enterprises 6.6 kV power distribution system.

  • Products are mainly exported to southeast Asia, East Asia, Central Asia and other developing countries and regions.

  • Standards: IEC 60076 series, IEC 6013, IEC 60214-1, IEC 60296; GB1094 series, GB/T6451-2015, GB/T7597-2007, etc.

Product advantages

Leading technology:

  • High pressure copper tape winding technology, improve lightning resistance.

  • Low voltage copper foil winding technology, high quality A class insulation material insulation.

  • Small magnetic leakage, high mechanical strength, strong short circuit resistance.

  • Iron core 45° full oblique joint step laminated structure.

The shell:

  • Mitsubishi laser cutting machine and CNC punching, reducing, folding and other equipment to ensure the accuracy of processing.

  • ABB robot automatic welding, laser detection, to avoid leakage, qualified rate of 99.99998%.

  • Electrostatic spray treatment, 50 years of paint (coating corrosion resistance within 100h, hardness ≥0.4.

  • Fully sealed structure, maintenance-free and maintenance-free, normal operation life of more than 30 years.

The iron core

  • The core material is high quality cold rolled grain oriented silicon steel sheet with mineral oxide insulation (from Baosteel, Wisco, China).

  • Minimize loss level, no-load current and noise by controlling the cutting and stacking process of silicon steel sheet.

  • The iron core is specially reinforced to ensure the transformer structure is firm during normal operation and transportation.

winding:

  • Low voltage winding is made of high quality copper foil, excellent insulation resistance.

  • The high voltage windings are usually made of insulated copper wire, using the patented technology of Hengfengyou Electric.

  • Very good resistance to radial stress caused by short circuit.

 High quality material:

  •  Baowu Steel Group production of silicon steel sheet.

  • High quality anaerobic copper from China.

  • CNPC (Kunlun Petroleum) High quality transformer oil (25# 40#).

 Other instructions:

  • The low-voltage outgoing terminal is tinned copper bar.

  • The high-voltage outlet terminals are ring tinned bolts.

  • Default no-load voltage regulation (on-load voltage regulation can be customized) Tap switch 5 or 7 speed adjustment.

  • Transformers above 630KVA are protected by gas relays.

Ordering instructions:

  • Main parameters of transformer (voltage, capacity, loss and other main parameters.

  • Transformer operating environment (altitude, temperature, humidity, location, etc.

  • Other customization requirements (tap switch, color, oil pillow, etc.

  • The minimum order quantity is 1 sets, worldwide delivery within 7 days.

    Normal delivery period of 30 days, worldwide fast delivery.

How to choose the parameters of three-phase distribution transformer?

Main Parameters of a Transformer

Rated Capacity:

  • Definition: The rated capacity of a transformer is the apparent power it can output under rated operating conditions. The unit is kilovolt-amperes (kVA) or megavolt-amperes (MVA).

  • Common Values: For a common 6.6 kV three-phase distribution transformer, the rated capacities include 100 kVA, 200 kVA, 315 kVA, 400 kVA, 500 kVA, 630 kVA, etc.

Rated Voltage:

  • Definition: Rated voltage includes the rated voltage on the high-voltage side and the rated voltage on the low-voltage side.

  • Example: For a 6.6 kV transformer, 6.6 kV is the rated voltage on the high-voltage side. The rated voltage on the low-voltage side is typically 0.4 kV or 0.69 kV, depending on the user's requirements.

Short-Circuit Impedance:

  • Definition: Short-circuit impedance is an important parameter of a transformer, indicating the impedance of the transformer under short-circuit conditions. The size of the short-circuit impedance affects the short-circuit current and the voltage drop during a short circuit, which is significant for the protection and operational stability of the transformer.

No-Load Loss:

  • Definition: No-load loss is the power consumed by the transformer when it is in a no-load state (i.e., the secondary side is open). It primarily includes hysteresis losses and eddy current losses in the core, as well as resistance losses in the windings. The smaller the no-load loss, the higher the efficiency of the transformer.

Load Loss:

  • Definition: Load loss is the power consumed by the transformer when it is in a loaded state (i.e., the secondary side is connected to a load). It primarily includes resistance losses in the windings and additional losses due to leakage flux. Load loss is proportional to the square of the load current and is an important indicator of transformer performance.

  • This translation provides a clear and concise explanation of the main parameters of a transformer, including rated capacity, rated voltage, short-circuit impedance, no-load loss, and load loss.

Know your supplier
Online store
On-time delivery rate
Response time
100.0%
≤4h
Company overview
Workplace: 10000m² Total staff: 300 Highest Annual Export(usD): 150000000
Workplace: 10000m²
Total staff: 300
Highest Annual Export(usD): 150000000
Services
Business Type: Design/Manufacture/Sales
Main Categories: High Voltage Electrical Apparatus/Electric transformer
Whole life care manager
Whole-life care management services for equipment procurement, use, maintenance, and after-sales, ensuring safe operation of electrical equipment, continuous control, and worry-free electricity consumption.
The equipment supplier has passed platform qualification certification and technical evaluation, ensuring compliance, professionalism, and reliability from the source.

Related Products

Related Knowledges

  • Main Transformer Accidents and Light Gas Operation Issues
    1. Accident Record (March 19, 2019)At 16:13 on March 19, 2019, the monitoring background reported a light gas action of No. 3 main transformer. In accordance with the Code for Operation of Power Transformers (DL/T572-2010), operation and maintenance (O&M) personnel inspected the on-site condition of No. 3 main transformer.On-site confirmation: The WBH non-electrical protection panel of No. 3 main transformer reported a Phase B light gas action of the transformer body, and the reset was ineff
    02/05/2026
  • Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
    Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
    01/30/2026
  • Neutral point grounding operation mode for 110kV~220kV power grid transformers
    The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
    01/29/2026
  • Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
    Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
    01/29/2026
  • Why Must a Transformer Core Be Grounded at Only One Point? Isn't Multi-Point Grounding More Reliable?
    Why Does the Transformer Core Need to Be Grounded?During operation, the transformer core, along with the metal structures, parts, and components that fix the core and windings, are all situated in a strong electric field. Under the influence of this electric field, they acquire a relatively high potential with respect to ground. If the core is not grounded, a potential difference will exist between the core and the grounded clamping structures and tank, which may lead to intermittent discharge.I
    01/29/2026
  • Understanding Transformer Neutral Grounding
    I. What is a Neutral Point?In transformers and generators, the neutral point is a specific point in the winding where the absolute voltage between this point and each external terminal is equal. In the diagram below, pointOrepresents the neutral point.II. Why Does the Neutral Point Need Grounding?The electrical connection method between the neutral point and earth in a three-phase AC power system is called theneutral grounding method. This grounding method directly affects:The safety, reliabilit
    01/29/2026

Related Solutions

  • Choosing Vizman Distribution Transformers: Innovative Customization to Meet Diverse Power Needs
    Distribution transformers are the heart of local electricity distribution systems. They step down voltage, enabling safe and efficient power supply to homes and businesses.At Vizman Electric Power Technology Co., Ltd., we understand the critical role of distribution transformers in the energy ecosystem. That's why we specialize in manufacturing high-quality distribution transformers, providing tailored solutions to meet diverse energy needs.1.Solutions Offered by Vizman Electric Power Technology
    04/16/2025
  • SF6 Circuit Breaker Solutions in High-Voltage Power Systems: A Case Study of VZIMAN Company
    1. Challenges in High-Voltage Power Systems1.1 High-voltage power systems, as the core of power transmission, face critical challenges: Equipment Performance Limits: With increasing voltage levels (e.g., 500kV and above), traditional circuit breakers struggle to meet high breaking capacities (over 40kA) and rapid insulation recovery requirements. Overvoltage Risks: Switching capacitive loads (e.g., capacitor banks) may cause reignition, leading to dangerous overvoltages. Poor Environmental Adapt
    05/13/2025
  • VZIMAN Company SF6 Circuit Breaker Solutions for Renewable Energy Grid Integration
    1. Current Challenges in Renewable Energy Grid Integration1.1 Grid Frequency Fluctuations and Stability IssuesThe intermittency and variability of renewable energy sources (e.g., wind and solar) lead to frequent grid frequency changes. Traditional circuit breakers struggle to respond rapidly to such dynamic loads, potentially causing equipment damage or regional blackouts. For instance, during sudden drops in wind power or abrupt solar output fluctuations, the grid must isolate faults within mil
    05/13/2025
Related Free tools
Haven't found the right supplier yet? Let matching verified suppliers find you. Get Quotation Now
Haven't found the right supplier yet? Let matching verified suppliers find you.
Get Quotation Now
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.