• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Core Equipment in the Smart Energy Era: Power Electronic Transformer Solution for Power Generation

Rockwill
17yrs 700++ staff 108000m²+m² US$150,000,000+ China

​I. Background and Demand

With the rapid increase in renewable energy adoption, traditional electromagnetic transformers struggle to meet modern grids’ demands for flexibility, efficiency, and intelligence. The volatility and intermittency of wind and solar power pose severe challenges to grid stability, necessitating an innovative energy conversion hub capable of dynamic regulation and high-quality power output.

​II. Solution Overview

This solution employs ​all-solid-state Power Electronic Transformers (PETs)​ to replace conventional line-frequency transformers. Leveraging high-frequency power electronics, PETs enable voltage-level conversion and energy control with core advantages:

  • Flexible Power Conversion: Breaks the limitations of traditional transformers (voltage/current amplitude only) to achieve multi-dimensional control over frequency, phase, and power.
  • Dynamic Response: Millisecond-level adjustment speed effectively mitigates renewable energy fluctuations.
  • Smart Interface: Creates a digital bridge between power generation units and the grid.

​III. Core Technical Architecture

​1. Multi-Level Topology Optimization

Adopts an ​"AC-DC-AC" Three-Stage Conversion Architecture:

  • High-Frequency Rectification Stage: Uses MMC (Modular Multilevel Converter) topology to accommodate wide input voltage fluctuations.
  • Isolated DC-DC Stage: Implements Dual Active Bridge (DAB) structure for 10-20 kHz high-frequency isolation.
  • Smart Inversion Stage: Supports dynamic switching of grid-tie strategies (V/f control, PQ control).

​2. Key Component Selection

​Component

​Technology

​Advantages

Switching Devices

SiC MOSFET Modules

High-temperature resistance (>200°C), 40% loss reduction

Magnetic Core

Nanocrystalline Alloy

60% lower high-frequency losses, 3x power density

Capacitors

Metallized Polypropylene Film Caps

High voltage tolerance, long lifespan, low ESR

​3. Intelligent Control System

Real-time grid status monitoring enables:

  • Active voltage sag ride-through (LVRT/ZVRT)
  • Dynamic power flow adjustment for renewable fluctuations
  • Loss optimization algorithms

​IV. Key Benefits and Value

​Efficiency Gains

​Metric

​Traditional Trafo

​PET

​Improvement

Full-Load Efficiency

98.2%

99.1%

↑0.9%

20% Load Efficiency

96.5%

98.8%

↑2.3%

No-Load Losses

0.8%

0.15%

↓81%

​Functional Capabilities

  • Active Filtering: Suppresses 5th–50th harmonics (THD <1.5%)
  • Reactive Compensation: ±100% continuous capacity regulation
  • Fault Ride-Through: Zero-voltage ride-through (ZVRT) support
  • Black Start: Autonomous voltage/frequency stabilization in islanded mode

​V. Application Scenarios

​Scenario 1: Wind Farm Collector System

graph TB 

    WTG1[WTG1] --> PET1[10kV/35kV PET] 

    WTG2[WTG2] --> PET1 

    ... 

    PET1 -->|35kV DC Bus| Collector 

    Collector --> G[220kV Main Trafo] 

  • Solves: Collector line oscillations from cumulative turbine voltage swings
  • Results: 12% lower wind curtailment, 65% reduction in power fluctuation deviation

​Scenario 2: PV Plant Smart Step-Up Station

  • Modular PET clusters (1–2 MW/unit)
  • MPPT functionality enhances yield by 7–15% in partial shading
  • Nighttime operation as STATCOM for grid reactive support

​VI. Implementation Roadmap

  1. Pilot Phase: Deploy PETs at renewables plants with >10% voltage volatility (20% capacity).
  2. Hybrid Grid Stage: Hybrid Transformer System (HTS) with parallel PET-traditional operation.
  3. Full Replacement: PETs for all new projects; phased retrofits for existing plants.

​VII. Economic Analysis

Example: 100MW Wind Farm

​Item

​Traditional

​PET

​Annual Benefit

Capex

¥32M

¥38M

-¥6M

Annual Power Losses

¥2.88M

¥1.08M

+¥1.8M

O&M Costs

¥0.8M

¥0.45M

+¥0.35M

Reactive Savings

¥0.6M

+¥0.6M

Payback Period

<3 Years

 

Conclusion: PET solutions break traditional electromagnetic limitations, creating a next-generation power conversion platform for high-renewable grids. Their advantages in efficiency, grid support, and intelligence position them as a strategic technology for modern power systems.

08/05/2025
Recommended
Solution for Medium-Voltage Motor Control and Protection Using Vacuum Contactor-Fuse (VCF) in a Coal Conveying System
Project BackgroundA coal conveying system comprises 15 belt conveyors driven by medium-voltage motors. The system operates under complex conditions, with motors often subjected to heavy loads and frequent starts. To address these challenges and achieve effective control and reliable protection during motor startup, the project comprehensively adopts Vacuum Contactor-Fuse (VCF) combination devices for the 6kV medium-voltage motor power distribution. This solution details the technical features,
ABB Vacuum Contactor KC2 Power Supply System Technical Transformation Plan
Issue Overview​The 10kV air compressor starting system of a company utilizes the ABB vacuum contactor KC2 as the control component for the operating circuit. The dedicated wide-voltage power supply module paired with this contactor presents the following issues:​Frequent failures: The power supply module fails to properly transition the voltage from 300V to 12V, resulting in fuse blowouts.​Poor heat dissipation: Enclosed installation of the module leads to insufficient heat dissipation, acceler
Dedicated Vacuum Contactor Solution for Port Shore Power Systems
I. Background and Challenges​Shore power systems have become core technical equipment for ports to reduce carbon emissions and noise pollution. However, these systems face two major challenges in the harsh operational environment of ports:​Severe Environmental Corrosion: High humidity and salt spray in port areas cause serious corrosion to metal components and enclosures of electrical equipment, significantly impacting electrical lifespan and operational reliability.​High Switching Requirements:
Vacuum Contactor Industrial Power Control Solutions
Application Background and Pain Point Analysis​In modern industrial manufacturing power control systems, traditional contactors exhibit significant limitations under specific operating conditions:• ​Frequent Start-Stop Operations: Traditional contactors have limited mechanical lifespan, with frequent operations leading to coil burnout and mechanical jamming.• ​Poor Adaptability to Harsh Environments: Contacts are prone to oxidation in dusty environments, resulting in increased contact
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.