Voltage Drop Explained

The Electricity Forum
03/14/2024

Voltage drop (VD) occurs when the voltage at the end of a run of cable is lower than at the beginning. Any length or size of wires will have some resistance, and running a current through this dc resistance will cause the voltage to drop. As the length of the cable increases, so does its resistance and reactance increase in proportion. Hence, VD is particularly a problem with long cables runs, for example in larger buildings or on larger properties such as farms. This technique is often used when properly sizing conductors in any single phase, line to line electrical circuit. This can be measured with a voltage drop calculator.

WechatIMG1481.jpeg

Electrical cables carrying current always present inherent resistance, or impedance, to the flow of current. VD is measured as the amount of voltage loss which occurs through all or part of a circuit due to what is called cable "impedance" in volts.

Too much VD in a cable cross sectional area can cause lights to flicker or burn dimly, heaters to heat poorly, and motors to run hotter than normal and burn out. This condition causes the load to work harder with less voltage pushing the current.

How is this solved?

To decrease the VD in a circuit, you need to increase the size (cross section) of your conductors – this is done to lower the overall resistance of the cable length. Certainly, larger copper or aluminum cable sizes increase cost, so it’s important to calculate VD and find the optimum voltage wires size that will reduce VD to safe levels while remaining cost-effective.

 

How do you calculate voltage drop?

VD is the loss of voltage caused by the flow of current flow through a resistance. The greater the resistance the greater the VD To check the VD, use a voltmeter connected between the poinL where the VD is to be measured. In DC circuits and AC resistive circuits the total of all the voltage drops across series-connected loads should add up to the voltage applied to the circuit (Figure 1).

Each load device must receive its rated voltage to operate properly. If not enough voltage is available, the device will not operate as it should. You should always be certain the voltage you are going to measure does not exceed the range of the voltmeter. This may be difficult if the voltage is unknown. If such is the case, you should always start with the highest range. Attempting to measure a voltage higher than the voltmeter can handle may cause damage to the voltmeter. At times you may be required to measure a voltage from a specific point in the circuit to ground or a common reference point (Figure 8-15). To do this, first connect the black common test probe of the voltmeter to the circuit ground or common. Then connect the red test probe to whatever point in the circuit you want to measure.

To accurately calculate the VD for a given cable size, length, and current, you need to accurately know the resistance of the type of cable you’re using. However, AS3000 outlines a simplified method that can be used.

The table below is taken from AS3000 – it specifies ‘Am per %Vd‘ (amp metres per % voltage drop) for each cable size.  To calculate the VD for a circuit as a percentage, multiply the current (amps) by the cable length (metres); then divide this Ohm number by the value in the table.

For example, a 30m run of 6mm2 cable carrying 3 phase 32A will result in 1.5% drop: 32A x 30m = 960Am / 615 = 1.5%.


WechatIMG1479.png



The Electricity Forum

Electricity Forum publishes Electricity Today T&D Magazine and Intelligent Power Today Industrial Electrical Magazine. We publish electrical technical handbooks and associated digital magazine advertising supplements.

Working Voltage in Power System
Working Voltage in Power System
Working VoltageThe term "working voltage" refers to the maximum voltage that a device can withstand without sustaining damage or burning out, while ensuring the reliability, safety, and proper operation of both the device and associated circuits.For long-distance power transmission, the use of high voltage is advantageous. In AC systems, maintaining a load power factor as close to unity as possible is also economically necessary. Practically, heavy currents are more challenging to handle than hi
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
Research on the Evaluation Method of Uncertainty in the Verification and Measurement Results of Electronic Voltage Transformers in Power Grids
Research on the Evaluation Method of Uncertainty in the Verification and Measurement Results of Electronic Voltage Transformers in Power Grids
1. IntroductionGrid electronic voltage transformers, as indispensable measuring components in power systems, have their measurement accuracy directly tied to the stable operation and efficient management of power systems. However, in practice, due to the inherent characteristics of electronic components, environmental factors, and limitations of measurement methods, the measurement results of voltage transformers often involve uncertainty. This uncertainty not only impacts the accuracy of power
Oliver Watts
07/24/2025
Electromagnetic Compatibility Performance Design of Electronic Voltage Transformers
Electromagnetic Compatibility Performance Design of Electronic Voltage Transformers
1 Overview of EMC Performance of Electronic Voltage Transformers1.1 Definition & Requirements of EMCElectromagnetic Compatibility (EMC) denotes a device/system’s ability to operate undisturbed in a given electromagnetic environment and avoid causing unacceptable electromagnetic interference to other entities. For electronic voltage transformers, EMC demands stable measurement performance in complex settings, without interfering with other devices. Their EMC performance must be factored
Dyson
07/23/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!