What are the pros and cons of using ferromagnetic material in transformers?

Encyclopedia
02/12/2025

Advantages

  • High magnetic permeability: Ferromagnetic materials have high magnetic permeability, which means they can generate a large magnetic induction intensity under a relatively small magnetic field strength. In a transformer, using ferromagnetic materials for the core allows most of the magnetic field generated by the windings to be concentrated inside the core, enhancing the magnetic field coupling effect. This, in turn, improves the electromagnetic conversion efficiency of the transformer, enabling it to transfer and transform electrical energy more effectively.

  • Low hysteresis loss: Hysteresis refers to the phenomenon where the change in magnetic induction intensity lags behind the change in magnetic field strength in a magnetic material under an alternating magnetic field, resulting in energy loss. Ferromagnetic materials like silicon steel sheets have a relatively small hysteresis loop area. This indicates that in an alternating magnetic field, the energy loss caused by the hysteresis phenomenon is relatively low, which helps improve the efficiency of the transformer and reduces energy waste.

  • Low eddy - current loss: When a transformer is in operation, the alternating magnetic field induces an electric current, known as an eddy current, in the core. Eddy currents cause the core to heat up and result in energy loss. By using ferromagnetic materials with high resistivity and making the core into thin sheets (such as silicon steel sheets) that are insulated from each other, the path for the eddy current can be effectively reduced, thereby lowering the eddy - current loss and improving the performance and reliability of the transformer.

  • Good saturation characteristics: Ferromagnetic materials can maintain good linear magnetic properties within a certain range of magnetic field strength and only enter the saturation state when the magnetic field strength reaches a certain value. This characteristic enables the transformer to stably transfer electrical energy during normal operation. Moreover, in abnormal situations such as overloading, the saturation characteristic of the core can limit the further increase of the transformer current, providing a certain degree of protection.

Disadvantages

  • Hysteresis and eddy - current losses: Although the hysteresis and eddy - current losses of ferromagnetic materials are relatively low, during the long - term operation of the transformer, these losses still generate heat, causing the transformer temperature to rise. To ensure the normal operation of the transformer, effective heat - dissipation measures need to be taken, which increases the design and manufacturing costs of the transformer.

  • Heavy weight: Ferromagnetic materials have a relatively high density. Using ferromagnetic materials to manufacture the transformer core increases the overall weight of the transformer. This not only poses difficulties in the transportation and installation of the transformer but also may require a more robust support structure, further increasing the cost.

  • Significant temperature influence: The magnetic properties of ferromagnetic materials are affected by temperature. When the operating temperature of the transformer rises, the magnetic permeability of the ferromagnetic material decreases, and the hysteresis and eddy - current losses increase, which affects the performance and efficiency of the transformer. Therefore, when designing a transformer, the influence of temperature on the properties of ferromagnetic materials needs to be considered, and corresponding temperature compensation measures should be taken.

  • Possible noise generation: During the operation of the transformer, due to the magnetostriction effect of the core, the ferromagnetic material vibrates mechanically, generating noise. This noise not only affects the surrounding environment but may also impact the service life and reliability of the transformer. To reduce noise, special design and manufacturing processes, such as using low - noise core materials and optimizing the core structure, need to be adopted.

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
For users, when purchasing a 35kV new energy transformer, choosing between dry-type, mineral oil-filled, or vegetable oil-filled types involves multiple considerations. These include user habits, maintenance-free performance, safety and fire resistance, volume and weight, among others. However, cost differences are undoubtedly one of the most crucial factors.To illustrate the issue intuitively, this paper selects a three-level energy efficiency dual-winding new energy transformer with a rated ca
Ron
07/26/2025
What is the connection group of a transformer?
What is the connection group of a transformer?
Transformer Connection GroupThe connection group of a transformer refers to the phase difference between the primary and secondary voltages or currents. It is determined by the winding directions of the primary and secondary coils, the labeling of their start and end terminals, and the connection mode. Expressed in a clock-like format, there are 12 groups in total, numbered from 0 to 11.The DC method is commonly used to measure the transformer's connection group, mainly to verify whether the con
Vziman
07/26/2025
Working Voltage in Power System
Working Voltage in Power System
Working VoltageThe term "working voltage" refers to the maximum voltage that a device can withstand without sustaining damage or burning out, while ensuring the reliability, safety, and proper operation of both the device and associated circuits.For long-distance power transmission, the use of high voltage is advantageous. In AC systems, maintaining a load power factor as close to unity as possible is also economically necessary. Practically, heavy currents are more challenging to handle than hi
Encyclopedia
07/26/2025
What is the sequence for powering down the transformer?
What is the sequence for powering down the transformer?
The sequence for shutting down a main transformer is as follows: when de-energizing, the load side should be shut down first, followed by the power supply side. For energizing operations, the reverse order applies: the power supply side is energized first, then the load side. This is because: Energizing from the power supply side to the load side makes it easier to identify the fault range and take prompt judgment and handling measures in case of a fault, preventing the fault from spreading or e
Rockwell
07/26/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!