What is a Transformer Tap?

Encyclopedia
09/20/2024

What is a Transformer Tap?


Transformer tap definition


The transformer tap refers to a number of connection points set on the winding of the transformer, allowing the transformer ratio (voltage ratio) to be adjusted by changing the number of effective turns of the winding, so as to achieve the regulation of the output voltage. The use of transformer taps can greatly improve the flexibility and reliability of the power system, especially when voltage levels need to be adjusted or in response to load changes.


Tap action


Voltage regulation


  •  Adjusting the output voltage: By changing the ratio of the transformer, the output voltage can be adjusted to keep it at a desired level. This is very important for voltage control in the grid, especially in the case of large load changes or grid voltage fluctuations.


  • No-load regulation: The tap position is adjusted when the transformer is not loaded, which is suitable for situations where frequent regulation is not required.


  • On-load voltage regulation: allows the tap position to be adjusted when the transformer is loaded, which is suitable for frequent voltage regulation.


Load matching


Adapt to load changes: By adjusting the transformer ratio, the load demand can be better matched to ensure the stability and reliability of the power supply.


Fault protection


  • Overvoltage protection: When the power grid voltage is too high, the output voltage can be reduced by adjusting the tap to protect downstream devices from overvoltage.


  • Overload protection: When the load is too large, the current can be reduced by adjusting the tap to avoid the overload of the transformer.


System equilibrium


Balanced voltage distribution: When multiple transformers are running in parallel, the voltage distribution between the transformers can be balanced by adjusting the tap to ensure the stability of the system operation.


Economic operation


Energy-saving operation: By adjusting the tap, the operation state of the transformer can be optimized, the energy loss can be reduced, and the economy of the system can be improved.


Tap position


Taps are usually set on the high voltage side winding of the transformer, because the high voltage side of the current is smaller, it is easier to achieve the switch of taps. In some special cases, taps may also be installed on the low pressure side.


Types of taps


According to different use occasions and needs, taps can have different types:


  • Fixed tap: The position has been set at the time of manufacturing, and cannot be adjusted.


  • Adjustable tap: Allows the position to be adjusted on the fly to suit different operating requirements.


  • Load regulator tap: can be adjusted with load, suitable for frequent adjustment.


  • No load regulator tap: can only be adjusted when the load is disconnected, suitable for situations that do not require frequent adjustment.


Tap switching device


In order to achieve the switching of taps, special switching devices need to be used, common are:


  • Tap changer: It is used to switch the tap position during the operation of the transformer, which is divided into no-load tap changer and on-load tap changer.


  • Switching switch: Used to manually or automatically switch the tap position in the state of power failure.


Application scenario


Transformer taps are widely used in all aspects of power systems:


  • Power transmission: In long-distance transmission, the line voltage drop is compensated by adjusting the tap to ensure that the end voltage is stable.


  • Distribution network: In the urban distribution network, the tap is adjusted to cope with load changes in different periods of time to maintain voltage stability.


  • Industrial applications: In industrial electrical equipment, the tap is adjusted to meet the voltage requirements under different load conditions.


Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
For users, when purchasing a 35kV new energy transformer, choosing between dry-type, mineral oil-filled, or vegetable oil-filled types involves multiple considerations. These include user habits, maintenance-free performance, safety and fire resistance, volume and weight, among others. However, cost differences are undoubtedly one of the most crucial factors.To illustrate the issue intuitively, this paper selects a three-level energy efficiency dual-winding new energy transformer with a rated ca
Ron
07/26/2025
What is the connection group of a transformer?
What is the connection group of a transformer?
Transformer Connection GroupThe connection group of a transformer refers to the phase difference between the primary and secondary voltages or currents. It is determined by the winding directions of the primary and secondary coils, the labeling of their start and end terminals, and the connection mode. Expressed in a clock-like format, there are 12 groups in total, numbered from 0 to 11.The DC method is commonly used to measure the transformer's connection group, mainly to verify whether the con
Vziman
07/26/2025
What is the sequence for powering down the transformer?
What is the sequence for powering down the transformer?
The sequence for shutting down a main transformer is as follows: when de-energizing, the load side should be shut down first, followed by the power supply side. For energizing operations, the reverse order applies: the power supply side is energized first, then the load side. This is because: Energizing from the power supply side to the load side makes it easier to identify the fault range and take prompt judgment and handling measures in case of a fault, preventing the fault from spreading or e
Rockwell
07/26/2025
What are the methods for switching operations of station transformers?
What are the methods for switching operations of station transformers?
Let's take an auxiliary power system with two station transformers as an example. When one station transformer needs to be out of service, there are two operation methods: non-interruptive power supply and instantaneous power interruption. Generally, the method of instantaneous power interruption on the low-voltage side is preferred.The operation method for instantaneous power interruption on the low-voltage side is as follows:Open the 380V power incoming circuit breaker of the corresponding sec
Vziman
07/26/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!