• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What is Transformation Ratio?

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

What is Transformation Ratio?


Transformer conversion ratio refers to the proportional relationship between the number of turns between the primary and secondary windings of the transformer, which determines the voltage conversion capability of the transformer. The conversion ratio is one of the most basic characteristics of a transformer and is used to describe how the transformer changes the input voltage to the output voltage.


Definition


The conversion ratio of the transformer is defined as the ratio of the number of turns in the primary winding N1 to the number of turns in the secondary winding N2:


bca0efdf41ba69f748906149d8d19117.jpeg


The conversion ratio can also be expressed in terms of voltage, that is, the ratio of primary voltage V1 to secondary voltage V2:


51fb2a315075566a3a0879f1f8694555.jpeg


Type


Booster transformer: when N 1<N 2, the transformation ratio n<1, the primary voltage is lower than the secondary voltage, that is, V1<V2.


Step-down transformer: when N1>N2, the conversion ratio n>1, the primary voltage is higher than the secondary voltage, that is, V1>V2


Isolation transformer: when N1=N2, the transformation ratio n=1, the primary voltage is equal to the secondary voltage, that is V1 is equal to V2.


Working principle


The working principle of transformers is based on the law of electromagnetic induction. When an alternating current passes through the primary winding, it creates an alternating magnetic field around the winding. This magnetic field passes through the secondary winding and induces an electromotive force (EMF) in the secondary winding according to Faraday's law of electromagnetic induction. The size of the induced electromotive force is proportional to the number of turns in the winding, so:


d557d6dfe725e97ca0383325f89c048c.jpeg


Current relation


In addition to voltage changes, transformers also change current. According to the law of electromagnetic induction, the primary current I1 and the secondary current I2


The relationship between them follows the following rules:


42175a8b1964c5f5d0443fd8b074db8f.jpeg


This means that if the transformer is a booster transformer, the secondary current will be reduced; If it is a step-down transformer, the secondary current will increase.


Power relation


Ideally, the input power of the transformer is equal to the output power (ignoring the loss) :


a163359708e103f9d87590c40ecf97cc.jpeg


Application scenario


Transformer conversion ratio has a wide range of application scenarios, including but not limited to:


  •  Power transmission: In the process of power transmission, booster transformers are used to increase voltage to reduce energy loss in the transmission line; Step-down transformers are used to convert high voltage electricity at the end user to low voltage electricity suitable for domestic and industrial use.



  • Power distribution: In a power distribution system, transformers are used to convert the voltage of a high-voltage grid into a voltage suitable for use on the local grid.



  • Industrial applications: In a variety of industrial equipment, transformers are used to convert the grid voltage to the voltage suitable for the operation of a particular equipment.


  • Laboratory and research: In laboratories, transformers are used to generate specific voltages or currents to meet experimental needs.



Design and selection


When designing and selecting a transformer, the following factors need to be considered:


  • Load requirements: Select the appropriate conversion ratio according to the specific requirements of the load to ensure that the output voltage meets the requirements of the load.



  • Voltage level: Select the corresponding transformer according to the voltage level of the power system.



  • Capacity: Select the capacity of the transformer according to the maximum power requirements of the load.



  • Efficiency: Choose an efficient transformer to reduce energy loss.



  • Reliability: Select high-quality transformers to ensure long-term stable operation.


Give a tip and encourage the author!
Recommended
Under what circumstances should an arc suppression coil be taken out of service when it is installed?
Under what circumstances should an arc suppression coil be taken out of service when it is installed?
When installing an arc suppression coil, it is important to identify the conditions under which the coil should be taken out of service. The arc suppression coil should be disconnected under the following circumstances: When a transformer is being de-energized, the neutral-point disconnector must be opened first before performing any switching operations on the transformer. The energizing sequence is the reverse: the neutral-point disconnector should be closed only after the transformer is energ
Echo
11/05/2025
What fire prevention measures are available for power transformer failures?
What fire prevention measures are available for power transformer failures?
Failures in power transformers are commonly caused by severe overload operation, short circuits due to winding insulation degradation, aging of transformer oil, excessive contact resistance at connections or tap changers, failure of high- or low-voltage fuses to operate during external short circuits, core damage, internal arcing in oil, and lightning strikes.Since transformers are filled with insulating oil, fires can have severe consequences—ranging from oil spraying and ignition to, in extrem
Noah
11/05/2025
What are the common faults encountered during the operation of power transformer longitudinal differential protection?
What are the common faults encountered during the operation of power transformer longitudinal differential protection?
Transformer Longitudinal Differential Protection: Common Issues and SolutionsTransformer longitudinal differential protection is the most complex among all component differential protections. Misoperations occasionally occur during operation. According to 1997 statistics from the North China Power Grid for transformers rated 220 kV and above, there were 18 incorrect operations in total, of which 5 were due to longitudinal differential protection—accounting for approximately one-third. Causes of
Felix Spark
11/05/2025
How to Identify Internal Faults in a Transformer?
How to Identify Internal Faults in a Transformer?
Measure DC resistance: Use a bridge to measure the DC resistance of each high- and low-voltage winding. Check whether the resistance values among phases are balanced and consistent with the manufacturer’s original data. If phase resistance cannot be measured directly, line resistance may be measured instead. The DC resistance values can indicate whether the windings are intact, whether there are short circuits or open circuits, and whether the contact resistance of the tap changer is normal. If
Felix Spark
11/04/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.