What is Inverse Time Relay?

Encyclopedia
09/11/2024

What is Inverse Time Relay?


Inverse Time Relay Definition


An inverse time relay is defined as a relay where the operation time decreases as the actuating quantity increases.


Operating Time Relationship


The relay’s operating time is inversely proportional to the magnitude of the actuating quantity, meaning higher quantities result in faster relay operation.


Mechanical Accessories


Inverse time relays use mechanical accessories, such as a permanent magnet in an induction disc relay or an oil dash-pot in a solenoid relay, to achieve inverse time delay.


Characteristics Of An Inverse Time Relay


cf2b4fcb3094b7065dc77b8931b51844.jpeg

 

Here, in the graph it is clear that, when, actuating quantity is OA, the operating time of the relay is OA’, when actuating quantity is OB, the relay operating time is OB’ and when actuating quantity is OC, the relay operating quantity is OC’.


The graph also shows that if the actuating quantity is less than OA, the relay’s operating time becomes infinite, meaning the relay does not actuate. The minimum value of actuating quantity needed to start the relay is called the pick-up value, denoted as OA.


The graph indicates that as the actuating quantity approaches infinity, the operating time does not reach zero but instead approaches a constant value. This is the minimum time required to operate the relay.


During relay coordination in electrical power system protection scheme, there is some time intentionally required, to operate some specific relays after some specific time delays. Definite time lag relays are those which operate after a specific time.


The time lag between instant when the actuating current crosses the pickup level and the instant when relay contacts finally closed, is constant. This delay does not depend up on magnitude of actuating quantity. For all actuating quantity, above pick up values, the relay operating time is constant.

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
What is Cathode Ray Oscilloscope (CRO)?
What is Cathode Ray Oscilloscope (CRO)?
What is Cathode Ray Oscilloscope (CRO)?DefinitionA cathode ray oscilloscope (CRO) is an electrical instrument for measuring, analyzing and visualizing waveforms and other electronic/electrical phenomena. As a high - speed X - Y plotter, it shows an input signal against another signal or time. Capable of analyzing waveforms, transient phenomena and time - varying quantities across a wide frequency range (from very low to radio frequencies), it mainly operates on voltage. Other physical quantities
Edwiin
07/25/2025
What is Automatic Voltage Regulator?
What is Automatic Voltage Regulator?
An automatic voltage regulator is employed to regulate voltage, converting fluctuating voltages into a constant one. Voltage fluctuations mainly stem from variations in the load on the supply system. Such voltage variations can damage the equipment within the power system. These fluctuations can be mitigated by installing voltage - control equipment at various locations, such as near transformers, generators, and feeders. Multiple voltage regulators are often placed throughout the power system t
Edwiin
05/22/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!